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Summary

 

An approach for synthesizing buckling results and behavior for thin balanced and unbalanced 
symmetric laminates that are subjected to uniform heating or cooling and elastically restrained 
against thermal expansion or contraction is presented.  This approach uses a nondimensional anal-
ysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical 
loads and is based on useful nondimensional parameters.  In addition, stiffness-weighted laminate 
thermal-expansion parameters and compliance coefficients are derived that are used to determine 
critical temperatures in terms of physically intuitive mechanical-buckling coefficients.  The ef-
fects of membrane orthotropy and membrane anisotropy are included in the general formulation.  
Many results are presented for some common laminates that are intended to facilitate a structural 
designer’s transition to the use of the generic buckling design curves.  Several curves that illus-
trate the fundamental parameters used in the analysis are presented, for nine contemporary mate-
rial systems, that provide physical insight into the buckling response in addition to providing 
useful design data.  Examples are presented that demonstrate the use of the generic design curves.   
The analysis approach and generic results indicate the effects and characteristics of elastically re-
strained laminate thermal expansion or contraction, membrane orthotropy and anisotropy, and 
flexural orthotropy and anisotropy in a very general and unifying manner.
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Introduction

 

Buckling behavior of laminated plates that are subjected to combined mechanical and ther-
mal loads is an important consideration in the design of advanced high-speed aerospace vehicles.  
The sizing of many structural subcomponents of these vehicles is often determined by stability 
constraints.  One element that is of practical importance in structural design is the long rectangular 
plate.  These plates commonly appear as elements of stiffened panels that are used for wing struc-
tures, and as semimonocoque shell segments that are used for fuselage and launch vehicle struc-
tures.  Buckling results for infinitely long plates are important because they often provide a 
practical estimate of the behavior of finite-length rectangular plates, and they provide information 
that is useful in explaining the behavior of these finite-length plates.  Moreover, knowledge of the 
behavior of infinitely long plates can provide insight into the buckling behavior of more complex 
structures such as stiffened panels.

An important type of long plate that appears as an element of advanced composite structures 
is the symmetrically laminated plate.  In the present study, the term "symmetrically laminated" 
refers to plates in which every lamina above the plate midplane has a corresponding lamina locat-
ed at the same distance below the plate midplane, with the same thickness, material properties, 
and fiber orientation.  Symmetrically laminated plates are essentially flat after the manufacturing 
process and exhibit flat prebuckling deformation states, which is desirable for many applications.  
More importantly, the amenability of these plates to structural tailoring provides symmetrically 
laminated plates with a significant potential for reducing the weight of aerospace vehicles or for 
meeting special performance requirements.  Thus, understanding the mechanical and thermal 
buckling behavior of symmetrically laminated plates is an important part of the search for ways 
to exploit plate orthotropy and anisotropy to reduce structural weight or to fulfill a special design 
requirement.

For many practical cases, symmetrically laminated plates exhibit specially orthotropic behav-
ior.  However, in some cases these plates exhibit anisotropy in the form of material-induced cou-
pling between pure bending and twisting deformations.  This coupling is referred to herein as 
flexural anisotropy and it generally yields buckling modes that are skewed in appearance (see Fig. 
1).   Unbalanced, symmetrically laminated plates are also being investigated for special-purpose 
uses in aerospace structures.  These laminated plates exhibit anisotropy in the form of material-
induced coupling between pure inplane dilatation and inplane shear deformations in addition to 
flexural anisotropy.  This coupling is referred to herein as membrane anisotropy and it generally 
yields combined inplane stress states for simple loadings like uniform edge compression when in-
plane displacement constraints are imposed on one or more edges of a plate.  For example, when 
the edges of an unbalanced, symmetrically laminated plate, such as a 
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 laminate, are to-
tally restrained against thermal expansion and contraction, that is caused by uniform heating or 
cooling, inplane shear stresses are developed in addition to the usual compressive stresses that are 



 

6

 

often present in balanced laminates. These kinematically induced shear stresses can be relatively 
large in magnitude, compared to the direct compressive stresses, and as a result can affect greatly 
the buckling behavior of the plate and yield buckling modes that are skewed in appearance. 

The effects of flexural orthotropy and flexural anisotropy on the buckling behavior of long 
rectangular plates that are subjected to single and combined loading conditions are becoming bet-
ter understood.  For example, in-depth parametric studies that show the effects of flexural ortho-
tropy and flexural anisotropy on the buckling behavior of long plates that are subjected to com-
pression, shear, pure inplane bending, and various combinations of these loads have been present-
ed in Refs. 1 through 3.  The results presented in these references indicate that the importance of 
flexural anisotropy on the buckling resistance of long plates varies with the magnitude and type 
of the combined loading condition.  Similar results for plates loaded by uniform shear and a gen-
eral linear distribution of axial load across the plate width have also been presented in Ref. 4.  In 
a similar manner, the effects of membrane orthotropy and membrane anisotropy on the buckling 
behavior of long rectangular plates that are restrained against axial thermal expansion or contrac-
tion and subjected to uniform heating or cooling and mechanical loads have been presented in 
Refs. 5 and 6.  Likewise, similar results for plates that are fully restrained against thermal expan-
sion and contraction and subjected to uniform heating or cooling have been presented in Ref. 7.  
This work has provided a better understanding of the load interaction effects of balanced and un-
balanced, symmetrically laminated plates that are subjected to mechanical loads and restrained 
against thermal expansion or contraction. 

The effects of membrane orthotropy and anisotropy, and the effects of flexural orthotropy and 
anisotropy, on the buckling behavior of long rectangular plates that are restrained against thermal 
expansion and contraction and subjected to uniform heating or cooling are becoming better un-
derstood.  However, relatively little work has been done that addresses, in a broad way, the effects 
of a compliant, elastic restraining medium on the thermal buckling of plates that are restrained 
against expansion and contraction.  This problem is important because, in reality, it is practically 
impossible to completely restrain a plate from thermal expansion and contraction, and in many 
instances the restraining medium undergoes thermal deformations.  Thus, one objective of the 
present study is to present an analytical approach that complements the physically intuitive buck-
ling analysis presented in Ref. 7 for anisotropic plates that are fully restrained against thermal ex-
pansion or contraction and subjected to uniform heating or cooling.  Another objective is to 
indicate the effects of a compliant, elastic restraining medium in a very general manner.  Towards 
these objectives, an intuitive buckling analysis for symmetrically laminated plates, that are elas-
tically restrained against thermal expansion and subjected to uniform heating or cooling, is pre-
sented that follows the analysis approach presented in Ref. 7, but includes the effects of the 
restraining medium in a very general manner.  To achieve this objective, the buckling analysis is 
formulated in terms of buckling coefficients for the known, mechanically equivalent loads, stiff-
ness-weighted laminate thermal expansion parameters, and compliance coefficients for the re-
straining medium.  Emphasis is placed on the properties of the compliance coefficients for the 
restraining medium because once known, they can be used with the results generic presented in 
Ref. 7 for anisotropic plates that are fully restrained against thermal expansion and contraction to 
determine the buckling behavior for a very broad range of laminate constructions and restraining 
media.  Thus, another objective of the proposed paper is to present values of the compliance co-
efficients for the restraining medium for a wide range of laminate stacking sequences and material 
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systems.  

In the subsequent presentation, the analysis that is used in the present study to formulate ther-
mal buckling problem in a generic nondimensional form is described first.  This description in-
cludes the nondimensional buckling analysis for infinitely long symmetrically laminated plates 
that are subjected to combined mechanical loads, and the formulation for the thermally induced 
mechanical loads and critical temperature change.  Then, examples of compliance coefficients for 
a laboratory-type elastic restraining medium are presented.  Next, specific results are presented 
for several common laminates with the two long edges clamped or simply supported and all edges 
elastically restrained against inplane movement.  Generic results are then presented that illustrate 
the fundamental parameters that are used in the analysis for nine contemporary material systems.  
Lastly, examples are presented that use the generic buckling-design curves presented in the 
present study and in Ref. 7, that are applicable to a very wide range of laminate constructions, to 
demonstrate the analytical procedure and to illustrate the effects of restraining medium on the 
buckling behavior.

 

Analysis Description

 

In preparing generic design charts for buckling of a single flat thin plate, a special-purpose 
analysis is often preferred over a general-purpose analysis code, such as a finite-element code, be-
cause of the cost and effort that is usually involved in generating a large number of results with a 
general-purpose code.  The results presented in the proposed paper were obtained by using such 
a special-purpose buckling analysis that is based on classical laminated-plate theory.  The analysis 
details are lengthy; hence, only a brief description of the buckling analysis is presented herein.  
First, the buckling analysis for long plates that are subjected to a general set of mechanical loads 
is described.  Then, the mechanical loads that are induced by elastically restrained thermal expan-
sion and contraction and that are used in the buckling analysis are derived, and an expression for 
the critical temperature change is presented that is in terms of the corresponding critical loading 
parameter and mechanical-buckling coefficients.

 

Buckling Analysis

 

Symmetrically laminated plates can have many different constructions because of the wide 
variety of material systems, fiber orientations, and stacking sequences that can be selected to con-
struct a laminate.  A way of coping with the large number of choices for laminate constructions is 
to use convenient nondimensional parameters in order to understand overall behavioral trends and 
sensitivities of the structural behavior to perturbations in laminate construction.  The buckling 
analysis used in the present paper is based on classical laminated-plate theory and the classical 
Rayleigh-Ritz method, and is derived explicitly in terms of the nondimensional parameters de-
fined in Refs. 1-8.  This approach was motivated by the need for generic (independent of a specific 
laminate construction) parametric results for composite-plate buckling behavior that are ex-
pressed in terms of the minimum number of independent parameters needed to fully characterize 
the behavior, and that indicate the overall trends and sensitivity of the results to changes in the 
parameters.  The nondimensional parameters that were used to formulate the buckling analysis are 
given by
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                                                              (1)

                                                                (2)

                                                                 (3)

                                                                 (4)

where  b  is the plate width and  λ  is the half-wave length of the buckle pattern of an infinitely 
long plate (see Fig. 1).  The subscripted  D-terms are the bending stiffnesses of classical laminat-

ed-plate theory.  The parameters  and β characterize the flexural orthotropy, and the parame-
ters  γ  and  δ  characterize the flexural anisotropy.

The mechanical loading conditions that are included in the buckling analysis are uniform 
transverse tension or compression, uniform shear, and a general linear distribution of axial load 
across the plate width, as depicted in Fig. 1.  Typically, an axial stress resultant distribution is par-
titioned into a uniform part and a pure bending part.  However, this representation is not unique.  

The longitudinal stress resultant  is partitioned in the analysis into a uniform tension or com-
pression part and a linearly varying part that corresponds to eccentric inplane bending loads.  This 
partitioning is given by

                                                (5)

where  denotes the intensity of the constant-valued tension or compression part of the load, 

and the term containing  defines the intensity of the eccentric inplane bending load distribu-

tion.  The symbols  and define the distribution of the inplane bending load, and the symbol 
η  is the nondimensional coordinate given by η = y/b.  This particular way of partitioning the lon-
gitudinal stress resultant was used for convenience by eliminating the need to calculate the uni-
form and pure bending parts of an axial stress resultant distribution prior to performing a buckling 
analysis.

The analysis is based on a general formulation that includes combined destabilizing loads that 

are proportional to a positive-valued loading parameter  that is increased until buckling occurs, 
and independent subcritical combined loads that remain fixed at a specified load level below the 
value of the buckling load.  Herein, the term "subcritical load" is defined as any load that does not 
cause buckling to occur.  In practice, the subcritical loads are applied to a plate prior to, and inde-
pendent of, the destabilizing loads with an intensity below that which will cause the plate to buck-
le.  Then, with the subcritical loads fixed, the active, destabilizing loads are applied by increasing 
the magnitude of the loading parameter until buckling occurs.  This approach permits certain types 
of combined-load interaction to be investigated in a direct and convenient manner.  For example, 
in analyzing the stability of an aircraft fuselage, the nondestabilizing transverse tension load  in a 
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fuselage panel that is caused by cabin pressurization can be considered to remain constant and, as 
a result, it can be represented as a passive, subcritical load.  The combined shear, compression, 
and inplane bending loads that are caused by flight maneuvers can vary and cause buckling and, 
as a result, they can be represented as active, destabilizing loads.

The distinction between the active, destabilizing and passive, subcritical loading systems is 
implemented in the buckling analysis by partitioning the prebuckling stress resultants as follows

                                                               (6)

                                                                (7)

                                                                 (8)

                                                                   (9)

where the stress resultants with the subscript 1 are the destabilizing loads, and those with the sub-
script 2 are the subcritical loads.  The sign convention used herein for positive values of these 
stress resultants is shown in Fig. 1.  In particular, positive values of the general linear edge stress 

distribution parameters , , , and  correspond to compression loads.  Negative values 

of  and , or negative values of either  or , yield linearly varying stress distributions 
that include tension.  Depictions of a variety of inplane bending load distributions are given in 

Ref. 4.  The two normal stress resultants of the system of destabilizing loads,  and are 
defined to be positive-valued for compression loads.  This convention results in positive eigen-
values being used to indicate instability due to uniform compression loads.

The buckling analysis includes several nondimensional stress resultants associated with Eqs. 
(6) through (9).  These dimensionless stress resultants are given by

                                                             (10)

                                                                        (11)

                                                            (12)

                                                             (13)

where the subscript  j  takes on the values of 1 and 2.  In addition, the destabilizing loads are ex-

pressed in terms of the loading parameter  in the analysis by

                                                                   (14)

                                                                   (15)

 Nxc = – Nx1
c + Nx2

c

 Ny = – Ny1 + Ny2

 Nxy = Nxy1 + Nxy2

 Nb = Nb1 + Nb2

 Nb1  Nb2 ε0  ε1

 Nb1  Nb2  ε0 ε1

 Nx1
c

 Ny1,

  
nxj

c =
Nxj

c b2

π2(D11 D22)
1/2

  
nyj =

Nyj b2

π2 D22

  
nxyj =

Nxyj b2

π2(D11 D22
3 )

1/4

  
nbj =

Nbj b2

π2(D11 D22)
1/2

p

 nx1
c = L 1 p

 ny1 = L 2 p



10

                                                                  (16)

                                                                   (17)

where  L1  through  L4  are load factors that determine the specific form (relative contributions of 

the load components) of a given system of destabilizing loads.  Typically, the dominant load fac-
tor is assigned a value of 1 and all others are given as positive or negative fractions.

Nondimensional buckling coefficients that are used herein are given by the values of the di-
mensionless stress resultants of the system of destabilizing loads at the onset of buckling; that is,

                                    (18)

                                        (19)

                                   (20)

                                    (21)

where quantities enclosed in the parentheses with the subscript "cr" are critical values that corre-

spond to buckling and  is the magnitude of the loading parameter at buckling.  Positive values 

of the coefficients  and  correspond to uniform compression loads, and the coefficient  
corresponds to uniform positive shear.  The direction of a positive shear stress resultant that acts 

on a plate is shown in Fig. 1.  The coefficient  corresponds to the specific inplane bending load 

distribution defined by the selected values of the parameters    and   (see Fig. 1).

The mathematical expression used in the variational analysis to represent the general off-cen-
ter and skewed buckle pattern is given by

                               (22)

where   and   are nondimensional coordinates,   is the out-of-plane displace-

ment field, and  and  are the unknown displacement amplitudes.  In accordance with the 

Rayleigh-Ritz method, the basis functions  are required to satisfy the kinematic boundary 
conditions on the plate edges at  η = 0  and  1.  For the simply supported plates, the basis functions 
used in the analysis are given by

                                                      (23)

for values of  m = 1, 2, 3, ..., N.  Similarly, for the clamped plates, the basis functions are given by
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 nb1 = L 4 p
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c
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c
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N
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 A m  Bm

  Φm(η)

  Φm(η) = sin mπη
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                                  (24)

For both boundary conditions, the two long edges of a plate are free to move inplane.

Algebraic equations that govern the buckling behavior of infinitely long plates are obtained 
by substituting the series expansion for the buckling mode given by Eq. (22) into a nondimension-
alized form of the second variation of the total potential energy and then computing the integrals 
appearing in the nondimensional second variation in closed form.  The resulting equations consti-

tute a generalized eigenvalue problem that depends on the aspect ratio of the buckle pattern  
(see Fig. 1) and the nondimensional parameters and nondimensional stress resultants defined 
herein.  The smallest eigenvalue of the problem corresponds to buckling and is found by specify-

ing a value of  and solving the corresponding generalized eigenvalue problem for its smallest 

eigenvalue.  This process is repeated for successive values of  until the overall smallest eigen-
value is found.

Results that were obtained from the analysis described herein for uniform compression, uni-
form shear, pure inplane bending (given by   = -1  and   = 1), and various combinations of 
these mechanical loads have been compared with other results for isotropic, orthotropic, and 
anisotropic plates that were obtained by using other analysis methods.  These comparisons are dis-
cussed in Refs. 1-3, and in every case the results described herein were found to be in good agree-
ment with those obtained from other analyses.  Likewise, results were obtained for isotropic and 
specially orthotropic plates that are subjected to a general linear distribution of axial load across 
the plate width and compared with results that were obtained by seven different authors (see Ref. 
4).  In every case, the agreement was good; that is, all less than 5% difference, and most less than 
2% difference.  More recently, results obtained for symmetrically laminated, balanced anisotropic 
angle-ply plates with the buckling analysis described herein (given in Ref. 4) were compared to 
experiments in Ref. 9.  The analytical results in Ref. 9 show a set of complex, nonintuitive buck-
ling interaction curves, for plates loaded by inplane bending and shear, that are skewed substan-
tially because of the presence of flexural anisotropy.  The experimental results verify the unusual 
trends of the highly skewed buckling interaction curves and the agreement between analysis and 
test appears to be very good.

Prebuckling Stress Resultants

Symmetrically laminated plates that are subjected to uniform temperature fields and re-
strained against thermal expansion and contraction may develop internal mechanical loads that 
can cause buckling.  These induced mechanical loads enter the analysis through the membrane 
constitutive equations. The standard form of these membrane constitutive equations for thin 
plates, that is based on classical laminated-plate theory, is found in Refs. 10 and 11 and is ex-
pressed in terms of membrane stiffness coefficients and fictitious thermal stress resultants.  Fol-
lowing Ref. 7, the membrane constitutive equations are used in the present study in an inverted 
form that uses the overall laminate coefficients of thermal expansion and the membrane compli-
ance coefficients. This form of the membrane constitutive equations for symmetrically laminated 
plates is given by 

  Φm(η) = cos(m–1)πη – cos(m+1)πη

  λ/b

  λ/b

  λ/b

 ε0  ε1
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                                   (25)

where u(x,y) and v(x,y) are the prebuckling, inplane displacements in the x- and y-coordinate di-

rections (see Fig. 2), respectively; , , and  are the overall laminate coefficients of thermal 

expansion; the subscripted a-terms are the plate membrane compliance coefficients;  is the 
magnitude of the uniform temperature change from a predetermined stress- and strain-free refer-
ence state; and commas followed by a subscript denote partial differentiation with respect to the 
coordinate associated with the subscript. For restrained thermal expansion and contraction prob-
lems, the plates are assumed to be supported and loaded such that the prebuckling stress field is 
uniform. With this assumption, a compatible displacement field is obtained directly by integrating 
Eqs. (25).  This integration yields

                        (26)

                        (27)

and

                                    (28)

Equations (25)-(28) can be used to determine the thermally induced mechanical loadings for 
several problems of practical interest. The problems consist of plates restrained against axial ther-
mal expansion and contraction (see Ref. 5 or 6), plates restrained against transverse thermal ex-
pansion or contraction (y-coordinate direction), and plates completely restrained against thermal 
expansion and contraction (see Ref. 7).  In the present study, however, symmetrically laminated 
plates that are elastically restrained against thermal expansion and contraction are considered.

  All the stress resultants in a given plate are induced by the elastically restrained thermal ex-
pansion or contraction and, when considered together, may be destabilizing.  The induced stress 
resultants are proportional to the strains caused by expansions or contractions and shearing defor-
mations of the plate and the resistance provided by the restraining medium.  Typically, the elastic 
resistance of a restraining medium is simulated with linear springs and expressed in terms of the 
corresponding spring stiffnesses.  In the present study, the elastic resistance of a restraining me-
dium is represented approximately, and in a general manner, in terms of the overall compliance 
and thermal expansion coefficients of a homogeneous, anisotropic restraining medium.  For this 
type of representation, the prebuckling stress state is assumed to be uniform, for all practical pur-
poses. When the compliance of the restraining medium is relatively small (close to a rigid medi-
um), the induced prebuckling stress state is expected to be nearly uniform and the approach 
presented herein for calculating buckling loads is expected to be a reasonable approximation.  For 
more compliant media, nonuniformities in the prebuckling stress state are expected to increase, 
and thus the approach presented herein for calculating buckling loads must be used with caution 
and considerable engineering judgement.  However, it is apparent that there are several types of 

  u,x

v,y

u,y + v,x

=
a11 a12 a16

a12 a22 a26

a16 a26 a66

Nx

Ny

Nxy

+
αx

αy

αxy

Θ0

 αx  αy   αxy

  Θ0

  u(x,y) = a11 Nx + a12 Ny + a16 Nxy + αx Θ0 x + g1y + g2

  v(x,y) = a12 Nx + a22 Ny + a26 Nxy + αy Θ0 y + g3x + g4

  g1 + g3 = a16 Nx + a26 Ny + a66 Nxy + αxy Θ0
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elastic support conditions that can be modeled accurately with the approach presented herein.  
One type of elastic support condition, that may be useful in laboratory structural testing, is de-
scribed herein after the general formulation of the induced prebuckling stress state and buckling 
analysis are presented.

  In the general formulation of the present study, the thermally induced inplane stress result-
ants are determined by effectively enforcing displacement compatibility and Newton’s law of ac-
tion and reaction, at the interfaces between the plate and the restraining medium.  In particular, 
the stresses in the plate and the restraining medium are assumed to be, for the most part, uniform 
and to have the same constant values.  Moreover, elongation and shear of the plate are assumed 
to be balanced by contraction and shear of the restraining medium such that the total, average 
strain in the plate is the negative of the total, average strain in the part of the restraining medium 
providing the resistance.  For a restraining medium like the one shown in Fig. 2, but of effectively 
infinite planar extent, the stresses produced by expansion or contraction and shear are self equil-
ibrated and, as a result, the elastic resistance provided can be idealized, or approximated, as the 
result of a uniform stress and deformation state acting over a rectangular region surrounding the 
plate and with finite dimensions.  The finite dimensions could be determined by applying St. Ve-
nant’s principle to determine the decay lengths of the self-equilibrated stresses.

  Following the reasoning of the previous suppositions, the positive-valued (total) strains in 
the restraining medium are obtained from the equivalent of Eq. (25) for the restaining medium.  
Then, the strains in the restraining medium are replaced in the equivalent of Eq. (25) with the neg-
ative of the corresponding strains in the plate, given by the left-hand side of Eq. (25), to fulfill 
displacement compatibility in an overall manner.  With this approach, the positive-valued (total) 
strains in the plate, given by the left-hand side of Eq. (25), are expressed in terms of the properties 
of the restraining medium as

                             (29)

where the superscript R denotes a quantity associated with the restraining medium.  It is reiterated, 
that the negative signs in Eq. (29) come from the supposition that a positive, expansional strain 
for the plate in the x-direction produces compressive stress in the x-direction, that corresponds to 
a negative value for Nx.  In addition, the Poisson effect produces a tensile stress in the y-direction, 
that corresponds to a positive value for Ny.  A similar response is noted for a positive, expansional 
strain for the plate in the y-direction.  For a positive shearing deformation, a negative shearing 
stress resultant acts on the restraining medium.  

Enforcing compatibility at the interface between the plate and the restraining medium is man-
ifested by eliminating the strains from Eqs. (25) and (29), which gives

            (30)

  u,x

v,y

u,y + v,x

= –
a11

R a12
R a16

R

a12
R a22

R a26
R

a16
R a26

R a66
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Nxy

–
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R

αy
R
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R
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Next, because all the subcritical loads are zero-valued in the absence of applied mechanical loads, 

Nx(x,y) = - , Ny(x,y) = - , and Nxy(x,y) = Nxy1 (see Fig. 2).  This substitution yields 

                   (31)

The thermally induced stress resultants for this problem are obtained by solving matrix Eq. (31) 

for , , and Nxy1. The solution is given symbolically by

                      (32)

                      (33)

                  (34)

where the subscripted A-terms with the overbars are elements of the inverse of the matrix in the 
left-hand side of matrix Eq. (31).  When the restraining medium is totally rigid, the compliances 
of the restraining medium in Eq. (31) are zero valued and the subscripted A-terms with the over-
bars reduce to the usual membrane stiffnesses of laminated plate theory, which are denoted herein 
by subscripted A-terms without the overbars.  Because the elements of the matrix in the left-hand 
side of Eq. (31) typically have greater magnitude than the corresponding elements for only the 
plate, and because the elements of the inverse of  a matrix  are like their corresponding reciprocals, 
it follows that the subscripted A-terms with the overbars typically have smaller magnitude than 
the corresponding subscripted A-terms without the overbars.

Critical Temperature Change

Equations (32)-(34) define a combined loading state that is induced by elastically restrained 
thermal expansion and contraction.  More specifically, the equations indicate that the induced 
loads depend on the compliance of the restraining medium and the relative overall thermal expan-
sion or contraction of the plate and the restraining medium.  In addition, these equations show that 
each of the thermally induced mechanical loads generally depends on all three laminate coeffi-
cients of thermal expansion, and that positive values for the stress resultants are possible even for 
negative values of Θ0 (uniform cooling) and vice versa.  For example, a laminate could have a 

negative value of  and still have a positive value of  (axial compression).  Thus, the signs 
of Θ0 and the bracketed quantities in Eqs. (32)-(34) must be considered in formulating the buck-
ling problem. 

The buckling problem is posed by first substituting Eqs. (32)-(34) into Eqs. (10)-(12), respec-
tively, to obtain expressions for the nondimensional stress resultants that can be used to charac-
terize the thermally induced mechanical loads.  Following Ref. 7, the nondimensional stress 
resultants are expressed in terms of stiffness-weighted laminate thermal-expansion parameters de-

 Nx1
c  Ny1

  a11 + a11
R a12 + a12

R a16 + a16
R

a12 + a12
R a22 + a22

R a26 + a26
R

a16 + a16
R a26 + a26

R a66 + a66
R

Nx1
c

Ny1

– Nxy1

=
αx + αx

R

αy + αy
R

αxy + αxy
R

Θ0

 Nx1
c  Ny1

  Nx1
c = A 11 αx + αx
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R Θ0

  Nxy1 = – A 16 αx + αx
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c
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noted by , , and , and by nondimensional compliance coefficients denoted by C1, C2, and 
C3.  These expressions, with the use of Eqs. (14)-(16), are given by

                                         (35)

                                         (36)

                                        (37)

where

                                         (38)

                                         (39)

                                      (40)

                       (41)

                       (42)

                       (43)

It is important to point out that because the subscripted A-terms with the overbars are typically 
less than the corresponding subscripted A-terms without the overbars, that typically C1 ≥ 0, C2 ≥ 
0, and C3 ≥ 0 when the thermal expansion or contraction of the restraining medium is negligible.  
Moreover, for a totally rigid restraining medium with negligible thermal expansion or contraction, 
C1 = C2 = C3 = 0.  However, in general, the compliance factors C1, C2, and C3 may be negative 
valued when the restraining medium has a higher relative thermal expansion or contraction than 
the plate.  Thus, the relative stiffness and relative thermal expansion and contraction can signifi-
cantly change the nature of the thermally induced mechanical loads, as expected.

Equations (10)-(12) and (35)-(37) indicate that , Ny1, and Nxy1 are positive-valued (see Fig. 

2b) when , , and  are positive-valued, respectively, and when 

Θ0 is positive-valued. Similarly, , Ny1, and Nxy1 are negative-valued when , 

, and  are positive-valued, respectively, and Θ0 is negative-valued, or 
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when , , and  are negative-valued, respectively, and Θ0 is 

positive-valued.  Next, Eqs. (35)-(37) are substituted into Eqs. (18)-(20) to obtain the relationships 

between the mechanical-buckling coefficients, load factors, and the critical temperature ; that 
is,

                                 (44)

                                 (45)

                                (46)

where the critical eigenvalue  for a given set of flexural (bending) 

boundary conditions (e.g., simply supported and clamped edges).  Equations (44)-(46) reduce to 
the corresponding equations presented in Ref. 7 for plates that are fully restrained against thermal 
expansion and contraction (C1 = C2 = C3 = 0).  

The next step in posing the buckling problem is to define the load factors L1, L2, and L3 that 
appear in Eqs. (35)-(37) and (44)-(46).  It is important to reiterate that positive, negative, and zero 

values for  correspond to positive, negative, and zero values for , respectively 

(see Fig. 2b).  Similarly,  positive, negative, and zero values for  correspond to pos-

itive, negative, and zero values for , respectively; and positive, negative, and zero values for 

 correspond to positive, negative, and zero values for Nxy1, respectively.   To define 

the load factors properly, the signs of  , Ny1, and Nxy1 must be considered.  Specifically, the 
load factors must be defined such that positive values of L1, L2, and L3 correspond to positive val-

ues of , Ny1, and Nxy1, respectively.  Moreover, both positive (heating) and negative (cooling) 
values of  Θ0 must be considered.  These requirements lead to six cases that must be considered 

in formulating the buckling analysis; that is, the cases for which , 

,  with ,  with ,  

with , and  with .  The values of the mechanical-

load factors L1, L2, and L3 for each of these cases are presented subsequently.

Case 1.  For the case when ,  and  L1 = 1  is appropriate (axial com-

pression).  The values for the other two load factors that are needed to completely define the pre-
buckling stress state are obtained by dividing Eqs. (19) and (20) by Eq. (18), with L1 = 1, or by 
dividing Eqs. (36) and (37) by Eq. (35). This step yields
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      (47)

  (48)

For an isotropic plate, these expressions reduce to  and  L3 = 0.  With  L1 

= 1 and  L2 and  L3  defined by Eqs. (47) and (48), the relationship between the critical value of 

the mechanical loading parameter  and the critical temperature   is determined by Eq. (44); 
that is,

                                                (49)

where  for a given set of flexural boundary conditions.  It is important 

to point out that Eq. (49) yields positive and negative values for  for positive and negative val-

ues of , respectively.  Moreover, it is important to reiterate that the relationship be-

tween  and the corresponding mechanical buckling coefficients Kx, Ky, and Ks is given by Eqs. 
(49), (45), and (46), respectively.

Case 2.  For the case when ,  and  L1 = -1  is appropriate (axial 

tension).  Like for the previous case, the values for the other two load factors that are needed to 
completely define the prebuckling stress state are obtained by dividing Eqs. (19) and (20) by Eq. 
(18), but with L1 = -1, or by dividing Eqs. (36) and (37) by Eq. (35). This step yields

     (50)

       (51)

With  L1 = -1 and  L2 and  L3  defined by Eqs. (50) and (51), the relationship between the critical 

value of the mechanical loading parameter  and the critical temperature   is again deter-
mined by Eq. (44); that is,

                                          (52a)

In contrast to the previous case, Eq. (52a) yields positive values for  for negative values of 

, and vice versa.  For laminates with L3 = 0 (balanced laminates) and L2 0 (transverse 

tension), no destabilizing compression or shear loads are present and buckling cannot occur be-
cause the plate is in a state of biaxial tension.  In contrast, when L3 = 0 and L2 > 0, a plate is sub-
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jected to axial tension and transverse compression.  Figures 29-31 of Ref. 1 indicate that an 
infinitely long plate buckles as a wide column for this type of loading, and that the buckling co-
efficient  Ky = 1 and 4 for simply supported and clamped plates, respectively.  With Ky known, 
Eqs. (45) and (52a) give

                                         (52b)

Case 3.  For a general symmetric laminate, the possibility exists that , which implies 

that .  For this case, L1 = 0  is appropriate and the sign of  must be consid-

ered in defining the nonzero load factors.  In particular, for ,  and  L1 = 

0  and  L2 = 1  are appropriate (transverse compression).  The value for the load factor L3 that is 
needed to completely define the prebuckling stress state is obtained by dividing Eq. (20) by Eq. 
(19), with L2 = 1, or by dividing Eq. (37) by Eq. (36). This step yields

     (53)

The relationship between L3 and the mechanical-buckling coefficients Ky and Ks is shown in Figs. 
24-27 of Ref. 1.  With  L1 = 0, L2 =1, and  L3  defined by Eq. (53), the relationship between the 

critical value of the mechanical loading parameter  and the critical temperature   is deter-
mined by Eq. (45); that is,

                                         (54a)

It is important to point out that Eq. (54a) yields positive and negative values for  for positive 

and negative values of , respectively.  For laminates with L3 = 0 (balanced laminates) 

a plate is subjected to only transverse compression. Thus, an infinitely long plate buckles as a 
wide column for this type of loading, and the buckling coefficient Ky = 1 and 4 for simply sup-
ported and clamped plates, respectively.  With Ky known, Eq. (45) gives

                                              (54b)

Case 4.  For the case when  and  ,  and  L1 = 0 and  L2 = -1 

are appropriate (transverse tension).  Like for the previous case, the value for the load factor L3 
that is needed to completely define the prebuckling stress state is obtained by dividing Eq. (20) 
by Eq. (19), with L2 = -1, or by dividing Eq. (37) by Eq. (36). This step yields
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   (55)

Like the previous case, the relationship between L3 and the mechanical-buckling coefficients Ky 
and Ks is shown in Figs. 24-27 of Ref. 1.  With  L1 = 0, L2 = -1, and  L3  defined by Eq. (55), the 

relationship between the critical value of the mechanical loading parameter  and the critical 

temperature   is determined by Eq. (45); that is,

                                           (56)

For this case, Eq. (56) yields positive values for  for negative values of , and vice 

versa.  For laminates with L3 = 0 (balanced laminates), no destabilizing compression or shear 
loads are present and buckling cannot occur because the plate is in a state of uniaxial, transverse 
tension. 

Case 5.  For the case with  and ,  and , 

which implies that L1 = L2 = 0, and that  L3 = 1  is appropriate (positive shear loading, as shown 
in Fig. 2b).  With  L1 = 0, L2 = 0, and  L3 = 1, the relationship between the critical value of the 

mechanical loading parameter  and the critical temperature   is determined by Eq. (46); that 
is,

                                             (57)

Again, it is important to point out that Eq. (57) yields positive and negative values for  for pos-

itive and negative values of , respectively. In addition, values of the mechanical-buck-

ling coefficient Ks for several laminates are given in Ref. 1.

Case 6.  The final case to consider is when  and .  For this case, 

 and , which implies that L1 = L2 = 0, and that  L3 = -1  is appropriate (neg-
ative shear loading).  With  L1 = 0, L2 = 0, and  L3 = -1, the relationship between the critical value 

of the mechanical loading parameter  and the critical temperature   is again determined by 
Eq. (46); that is,

                                            (58)

In contrast to the previous case, Eq. (58) yields positive values for  for negative values of 

, and vice versa.

Finally,  it is important to mention that the approach used herein to define the prebuckling 
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stress state and the critical temperature  also applies for a more sophisticated plate theory, like 

a first-order transverse-shear deformation theory.  For this theory,  would depend also upon 
additional nondimensional parameters that characterize the transverse-shear flexibility.  Thus, the 

only difference in the results for the two plate bending theories is the actual value of  that is 

used in Eqs. (44)-(46), for a given problem.  It is also important to point out that  for a long 

plate does not depend on the buckle aspect  ratio parameter .  This fact has been shown in Refs. 
1-4.

Example of Compliance Coefficients

Before performing the buckling analysis described herein, expressions for the compliance 
coefficients defined by Eqs. (41)-(43) are needed.  To demonstrate the formulation of the present 
study, the example of a practical, laboratory-type apparatus, that is depicted in Fig. 3, is presented 
in this section.

An idealized structural arrangement is shown in Fig. 3 in which a central balanced, symmet-
rically laminated plate is restrained against inplane movement by four generally different, bal-
anced, symmetrically laminated plates.  For this arrangement, the thermally induced loads consist 
of tension or compression loads, without shear.  The plates that provide the elastic restraint are 
numbered sequentially from 1 to 4 in the figure.  Each of the four restraining plates is subjected 

to a generally different temperature change, denoted by  (k = 1, 2, 3, and 4), and is enclosed 

by an insulated boundary. In addition, the central plate is subjected to a temperature change, de-
noted by Θ0, where the superscript (5) has been dropped for simplicity.  The restraining plates are 
supported to allow tangential movement at the rigid frame shown in the figure and at the interfac-
es with the central plate. 

The compliance of the restraining medium is determined by first defining the elongations of 
each of the five plates.  In particular, the axial elongation of plates 1, 2, and 5 are denoted by 

respectively.  Similarly, the transverse elongation of plates 3, 4, and 5 are denot-

ed by respectively.  To satisfy compatibility, the elongations must satisfy the fol-

lowing equations:

                                                       (59)

                                                       (60)

because the surrounding frame is rigid. These compatibility conditions state that the axial and 
transverse elongation or expansion of the central plate is balanced by the corresponding contrac-
tion of the restraining plates.  These conditions are expressed in terms of strains by

                                                    (61)

  Θ0
cr

 pcr

 pcr

 pcr

 α∞

  Θ0
(k)

  δx
(1), δx

(2), and δx
(5),

  δy
(3), δy

(4), and δy
(5),

  δx
(1) + δx

(2) + δx
(5) = 0

  δy
(3) + δy

(4) + δy
(5) = 0

  a(1)

a εx
(1) + a(2)

a εx
(2) + εx

(5) = 0



21

                                                    (62)

where  and  (k = 1, 2, 3, 4, and 5) are given by the corresponding elongation divided by 

the corresponding length or width, as appropriate.  

Next, the strains in each plate are expressed in terms of the stress resultants as follows:

                                                (63)

                                                (64)

where the superscript  (k)  identifies the quantity for a given plate.  These expressions are simpli-

fied by noting that  and , and by applying Newton’s law of action and 

reaction between adjoining plates, which gives  and .  

Substituting these expressions for the stress resultants into Eqs. (63) and (64) and then the result-
ing expressions for the strains into Eqs. (61) and (62) gives

          (65)

         (66)

where the superscript (5) that identifies the central plate has been dropped for convenience and 
consistency with the previously used notation presented herein.  The desired form of these two 
equations is obtained by expressing the temperature change in the restaining plates in terms of the 

temperature change in the central plate by  (k = 1, 2, 3, and 4), and by defining 

                                                    (67)

                                                   (68)

                                             (69)

                                             (70)

These expressions indicate that, in general, each plate can have a different uniform, isolated tem-
perature field.  When τ(k) = 0 for all the restraining plates (k = 1, 2, 3, and 4), the restraining me-
dium does not undergo any thermal deformations. 
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The desired form of Eqs. (65) and (66) is given in matrix form by

                         (71)

Next, because all the subcritical loads are zero-valued, Nx(x,y) = - , Ny(x,y) = - Ny1, and 
Nxy(x,y) = Nxy1 = 0 (see Fig. 2).  Substitution of these expressions into Eq. (71) yields 

                                   (72)

which is a degenerate form of Eq. (31).  Equation (72) shows that the thermally induced loads de-
pend on the compliance and thermal expansion or contraction of the central plate and the restrain-
ing plates.  For Eq. (72), Eqs. (32) and (33) reduce to

                                     (73)

                                     (74)

where the subscripted A-terms with the overbars are elements of the inverse of the matrix in the 
left-hand side of matrix Eq. (72).  Similarly, the expressions for the compliance coefficients C1 
and C2 that are needed for a buckling analysis and given by Eqs. (41)and (42), respectively, reduce 
to

                                      (75)

                                      (76)

When the restraining medium is totally rigid, the compliances of the restraining medium in Eq. 
(72) are zero valued and the subscripted A-terms with the overbars reduce to the usual membrane 
stiffnesses of laminated plate theory, which are denoted herein by subscripted A-terms without 
the overbars.

Examination of Eq. (72) indicates, as expected, that the Poisson-like lateral expansion or con-
traction of the restraining plates shown in Fig. 3 are totally independent; that is, this behavior is 

manifested by the absence of  terms in Eq. (72).  For a homogeneous, orthotropic restraining 

medium similar to that depicted in Fig. 2, this interaction of Poisson effects would be present, 
along with self-equilibrated shearing stresses and slight nonuniformities in the Nx(x,y) and 
Ny(x,y) distributions within the central plate.  For this type of restraining medium, a reasonable 
approximation to the thermally induced loads is given by 
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                                   (77)

where the compliances of the restraining medium could be estimated by subdividing the restrain-
ing medium into plates, neglecting the self-equilibrated shearing stresses, and applying a proce-
dure similar to that used to determine the compliances for the structural arrangement shown in 
Fig. 3.

For the results that are presented subsequently in the present study, it is convenient to intro-

duce the relative-compliance ratios  and .  Similarly, it is convenient to 

introduce the ratios of the coefficients of thermal expansion that are given by  and 

.  Once a particular laminate is selected for investigation, the relevant properties of the 

restraining medium are specified in a relative manner, with respect to the central plate, by defining 
values for R1, R2, T1, and T2.  With these ratios, the subscripted A-terms with the overbars, appear-
ing in Eqs. (73)-(76), become

                                         (78)

                                         (79)

                                         (80)

In addition, the compliance coefficients given by Eqs. (75) and (76) become

                (81)

                (82)

Moreover,

            (83)
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Results for Common Laminates and Discussion

Results are presented in Figs. 4-17 that illustrate the effects of the inplane elastic resistance 
provided by the practical, laboratory-type apparatus, previously described herein (see Fig. 3), on 
the buckling behavior of several common laminated plates subjected to a uniform temperature 
field.  In particular, results are presented for several common balanced, symmetric laminates that 
are made of  IM7/5260 graphite-bismaleimide material (see Table 1).  The laminates include 

 quasi-isotropic laminates,   and   quasi-orthotropic laminates,  

and  angle-ply laminates, where positive values of the lamina fiber angle θ is shown in 

Fig. 10.  The   and  laminates are described herein as quasi-orthotropic be-
cause of the presence of relatively small amounts of flexural anisotropy. All of the results are 
based on classical laminated-plate theory and the nominal ply thickness used in the calculations 
was 0.005 in.

The buckling behavior of the , , , and  laminates 
is governed by cases 1 through 4, that are defined by Eqs. (47) through (56), because balanced, 
symmetric laminates that are restrained against inplane movement do not exhibit shear loads 

when subjected to a uniform temperature field.  When  is  nonzero (see  cases 1 and 

2), the key parameters for these laminates that are needed to determine their stability are 

 and , or equivalently,  and .  When = 

0, the key parameter is , as defined by cases 3 and  4.

Results are presented in Figs. 4-6 that show the nondimensional compliance coefficient          

(1 + C1)(1 + T1) for the , , and  balanced, symmetric laminates, 
respectively.  Specifically, results are shown as a function of the relative-compliance ratio 

, for discrete values of the relative-compliance ratio  that range from  0  to  

0.5.  For these results, the ratios of the coefficients of thermal expansion, that are given by 

 and , are equal; that is T1 = T2.  Values of R1 = R2 = 0 correspond to plate 

that is rigidly restrained against thermal expansion or contraction.  Nonzero values of T1 account 
for thermal expansion of the restraining medium.  The parameter (1 + C1)(1 + T1) is used in the 
figures because C1 was found to be independent of the number of laminate plies (determined by 
the symbol m in the stacking sequence specification) and because Eq. (81) can be expressed in a 
manner that is independent of T1 for the special case of T1 = T2; that is,

               (84)
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Thus, graphs of  , that are given in Ref. 7 for specific values of the stacking sequence number  

m, can be used with the graphs of  (1 + C1)(1 + T1) provided herein to determine the buckling be-
havior for a large number of restraint configurations that include thermal deformations of the 
restaining plates. 
 

The results in Figs. 4-6 indicate a strong effect of laminate stacking sequence on the value of  

(1 + C1)(1 + T1), with the axially stiff  laminates exhibiting the widest variation with 

variations in R1 and R2. Results for the transversely stiff  laminates exhibit the least 
variation. Together, the results in Figs. 4-6 indicate that the parameter (1 + C1)(1 + T1) is a posi-
tive-valued, linear function of  R1 and  increases with increases in R1 or R2.  Because (1 + C1)(1 + 

T1) > 0  and  > 0 for these laminates (see Fig. 3 of Ref. 7), it follows that > 0 as 

long as (1 + T1) > 0.  Thus, the buckling behavior of these laminates is governed by case 1 for 
uniform heating and by case 2 for uniform cooling when (1 + T1) > 0, which typically includes 
most situations of practical importance.

Results are presented in Fig. 7 that show the nondimensional compliance coefficient ratio      
(1 + C1)/(1 + C2)  as a function of the relative-compliance ratio R1, for discrete values of the rela-
tive-compliance ratio R2 that range from 0 to 0.5.  These results are also for the case where the 
ratios of the coefficients of thermal expansion are equal (T1 = T2).  Moreover, the results are also 
independent of the number of laminate plies and the value of T1.  The black solid lines, the gray 

solid lines, and the gray dashed lines in the figure are for the , , and 

 laminates, respectively.  The expression for (1 + C1)/(1 + C2) that is obtained by sim-
plifying Eq. (83) accordingly is given by

                           (85)

Corresponding values of  that are needed to compute the parameter   are given 

in Fig. 4 of Ref. 7, for specific numbers of laminate plies, and are all positive valued. 

The results in Fig. 7 also show a strong effect of laminate stacking sequence on the value of  
(1 + C1)/(1 + C2).  The greatest sensitivity to variations in R1, as indicated by the slopes of the 

lines, is exhibited by the axially stiff  laminates, followed by the  quasi-

isotropic laminates and then the transversely stiff  laminates.  This trend appears to be 
reversed with respect to variations in R2.  In addition, Eq. (85) and the results in Fig. 7 indicate 
that the ratio (1 + C1)/(1 + C2) is a positive-valued linear function of  R1 for all three laminates.  

The values of (1 + C1)/(1 + C2) for the axially stiff  laminates increase with increases 

in R1 or R2.  In contrast, the values of (1 + C1)/(1 + C2) for the  quasi-isotropic lami-
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nates increase with increases in R1 and decrease with increases in R2.  Likewise, the values of        

(1 + C1)/(1 + C2) for the transversely stiff  laminates decrease with increases in R1 or 
R2.

Results that are similar to those presented in Figs. 4-7 are presented in Figs. 8 and 9 for the 
special case where the relative-compliance ratios are equal and the ratios of the coefficients of 
thermal expansion are equal; that is R1 = R2 and T1 = T2.  The black solid lines, the gray solid lines, 

and the gray dashed lines in the figures are for the , , and  lam-
inates, respectively.  Additionally, the results are independent of the number of laminate plies and 
the results in Fig. 9 are also independent of the value of T1.

Like the results in Figs. 4-6, the results in Fig. 8 also show a strong effect of laminate stacking 

sequence on the value of  (1 + C1)(1 + T1) for the axially stiff  laminates.  The results 
for these axially stiff laminates exhibit the greatest variations in (1 + C1)(1 + T1) with variations 

in R1 and a slight nonlinearity in the curve.  The results for the  quasi-isotropic lam-

inates and the transversely stiff  laminates exhibit the least variation with R1 and are 
nearly identical.   For all three laminate types, the parameter (1 + C1)(1 + T1) is a positive-valued, 
monotonically increasing function of the relative-compliance ratio R1.  

The results in Fig. 9 also show a strong effect of laminate stacking sequence on the value of  
(1 + C1)/(1 + C2), like the results in Fig. 7.  The greatest sensitivity to variations in R1 is exhibited 

by the axially stiff  laminates, which exhibit a slightly nonlinear, monotonically in-
creasing variation with R1.  The next greatest variation in (1 + C1)/(1 + C2) with R1 is exhibited by 

the transversely stiff  laminates, which exhibit a slightly nonlinear, monotonically de-

creasing variation with R1.  The least sensitivity to variations in R1 is exhibited by the  
quasi-isotropic laminates, for which (1 + C1)/(1 + C2) = 1 for all values of R1.  This constant value 
of unity is seen by examining Eq. (85) and noting that  A11 = A22 and αx = αy for this family of 
laminates.

In Ref. 7, it shown that the values of  and are all positive for the , 

, and  laminates.  Likewise, the results in Figs. 4-9 indicate that (1 + C1)/(1 
+ C2) > 0 and that (1 + C1) > 0 as long as (1 + T1) > 0.  Thus, for this practical range of T1, these 
laminates are loaded by biaxial compression when uniformly heated and by biaxial tension when 
uniformly cooled. Therefore, these laminates can buckle only when subjected to uniform heating 
(see case 1) when (1 + T1) > 0.

Results are presented in Figs. 10 and 11 that show the stiffness-weighted thermal expansion 

parameters,  and , respectively, for the  angle-ply lami-

nates.  The results in these figures are presented as a function of the fiber angle θ  and are for the 
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special case where the relative-compliance ratios are equal and the ratios of the coefficients of 
thermal expansion are equal (R1 = R2 and T1 = T2).  The black solid lines correspond to different 
values of the relative-compliance ratio R1, that range from values of 0 to 0.5.  Additionally, the 

results are independent of the number of laminate plies.  An expression for  is ob-

tained by combining Eqs. (38) and (81) and then simplifying.  The result is given by

                           (86)

Similarly, combining Eqs. (39) and (82) and then simplifying gives

                           (87)

The curves in Figs. 10 and 11 show a very strong dependence on the fiber angle θ.  In partic-

ular, is shown to increase, for the most part, with increasing values of θ, and 

is shown to decrease.  In addition, both stiffness-weighted thermal expansion pa-

rameters are shown to decrease with increasing values of the relative-compliance ratio R1.  For 
the curves that correspond to  R1 = 0, 0.1, 0.2, and 0.3, both stiffness-weighted thermal expansion 

parameters are positive for all values of the fiber angle θ, which means that > 0 as long 

as (1 + T1) > 0.  For these values of R1, and for (1 + T1) > 0, the laminates are loaded by biaxial 
compression for uniform heating (case 1) and biaxial tension for uniform cooling (case 2).  Thus, 
buckling can occur only for uniform heating, as governed by case 1.  

The results for the angle-ply laminates with R1 = 0.4 and 0.5 that are shown in Figs. 10 and 
11 indicate the possibility of several thermally induced loading conditions, depending on the par-
ticular value of the fiber angle θ.  First, the curves that correspond to R1 = 0.4 and 0.5 have zero 

values for  that are indicated in Fig. 10, by the unfilled circular symbols.  Specif-

ically, the curve that corresponds to R1 = 0.4 has zero values at approximately  θ = 18 deg and 29 
deg.  The curve that corresponds to R1 = 0.5 has zero values at approximately  θ = 15 deg and 32 

deg.  For these specific laminate and restraint configurations with = 0, Fig. 11 in-

dicates that the corresponding values of are positive as long as (1 + T1) > 0, which 

means that the plates are loaded by only transverse compression or tension for uniform heating or 
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uniform cooling, respectively.  Thus, the plates may buckle only under uniform heating, into a 
wide-column mode, as governed by Eq. (54b) of case 3.  Second, the curve that corresponds to R1 

= 0.4 has positive values for  and  for values of (approximately) 

θ < 18 deg,  29 < θ < 61 deg, and θ > 72 deg as long as (1 + T1) > 0.  Third,  is 

negative and is positive for 18 ≤ θ ≤ 29 deg, and  is positive and 

is negative for 61 ≤ θ ≤ 72 deg as long as (1 + T1) > 0.  Thus, for the range θ < 18 

deg,  29 < θ < 61 deg, and θ > 72 deg, the laminates are loaded by biaxial compression for uniform 
heating (case 1) and biaxial tension for uniform cooling (case 2) and, thus, buckling can occur 
only for uniform heating.  For 18 ≤ θ ≤ 29 deg, the laminates are loaded by axial tension and trans-
verse compression for uniform heating (case 2) and oppositely directed loads for uniform cooling 
(case 1).  Thus, for 18 ≤ θ ≤ 29 deg, buckling can occur for uniform heating or cooling.  For 61 ≤ 
θ ≤ 72 deg, the laminates are loaded by axial compression and transverse tension for uniform heat-
ing (case 1) and oppositely directed loads for uniform cooling (case 2).  Thus, for 61 ≤ θ ≤ 72 deg, 
buckling can also occur for uniform heating or cooling.  

The results in Figs. 10 and 11 for the  angle-ply laminates with R1 = 0.5 and (1 + T1) 
> 0 indicate behavioral trends that are similar to those previously described for the laminates with 
R1 = 0.4.  In particular, for the range θ < 15 deg,  32 < θ < 58 deg, and θ > 75 deg, the laminates 
are loaded by biaxial compression for uniform heating (case 1) and biaxial tension for uniform 
cooling (case 2), and buckling can occur only for uniform heating.  For 15 ≤ θ ≤ 32 deg, the lam-
inates are loaded by axial tension and transverse compression for uniform heating (case 2) and 
oppositely directed loads for uniform cooling (case 1).  Thus, for 15 ≤ θ ≤ 32 deg, buckling can 
occur for uniform heating or cooling.  For 58 ≤ θ ≤ 75 deg, the laminates are loaded by axial com-
pression and transverse tension for uniform heating (case 1) and oppositely directed loads for uni-
form cooling (case 2).  Thus, for 58 ≤ θ ≤ 75 deg, buckling can occur for uniform heating or 
cooling.  

Values for the critical temperature changes for the , , and  

laminates and for the  laminates with  m = 1  and  m > 5 are shown in Figs. 12-17.  In these 
figures, the buckling results are based on the solutions for infinitely long plates and uniform heat-
ing.  The solid and dashed curves correspond to results for plates with simply supported and 
clamped flexural boundary conditions, respectively.  In particular, Fig. 12 shows values of 

 for the , , and laminates, that are fully (rigidly) re-

strained against thermal expansion or contraction, as a function of the number of laminate plies.  

This fully restrained condition is indicated by the symbol .  Numerical values for the curves 
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in Fig. 12 are found in Tables 3, 5, and 7 of Ref. 7.  Similarly, Fig. 13 shows values of  

for the  laminates, with  m = 1  and  m > 5, that are fully (rigidly) restrained against thermal 
expansion or contraction (see Tables 11 and 12 of Ref. 7).  The results in Figs. 14-16 show the 

critical-temperature ratio  as a function of the nondimensional compliance ratio (1 + 

C1)/(1 + C2) and the stacking sequence numbers  m = 1  and  m = 8   for the , 

, and  laminates, respectively.  Likewise, the results in Fig. 17 show the 

critical-temperature ratio  as a function of the nondimensional compliance ratio (1 + 

C1)/(1 + C2) for the  laminates, with  m > 5, and for values of the fiber angle  θ = 30, 45, 
and 60 deg.  In Figs. 14-17, the results are based on the presumption that (1 + C1) > 0, such that  

 and the buckling responses are governed by case 1 (L1 = 1 and L3 = 0) for uni-

form heating.  This presumption is reasonable because  and  are all positive for these 

laminates, which means that > 0 for the range of (1 + C1)/(1 + C2) selected for the 

independent variable.  Moreover, the parameter (1 + C1) appears in the expression  

as a value to be selected. 

The results in Figs. 14-17 give the critical temperature change for a wide range of restraint 
conditions, relative to the critical temperature change for the corresponding plate that is fully (rig-
idly) restrained against thermal expansion or contraction (Figs. 12 and 13).  For example, values 

of (1 + C1) and (1 + C1)/(1 + C2) for the  quasi-isotropic laminates can be obtained 
from Figs. 4 and 7, respectively, and used with Fig. 14 to obtain critical temperature changes for 
a very large number of restraint configurations that are defined by the relative-compliance param-
eters R1 and R2 and by the ratio of the coefficients of thermal expansion given by T1.  This ap-
proach was used in the present study because the results for a given fully restrained plate serve as 
a reasonable reference point for assessing the effects of a given elastic restraining medium.

The buckling results shown in Figs. 12 and 13 for the fully restrained laminates were obtained 

by computing the ratios  first, in accordance with the procedure of case 1.  Next, the load 
factor L2 was determined by using Eq. (47) with  C1 = 0  and   C2 = 0.  The load factor L3 is zero-
valued, because balanced laminates do not induce shear loads when subjected to restrained  ther-

mal expansion or contraction. Then, the critical value of the loading parameter  was determined 
for each of the laminates and the critical temperature change was obtained by using Eq. (49) with  

C1 = 0.  Equations (47) and (49) were used because  for these laminates when subjected 
to uniform heating.  For these laminates, the critical value of the loading parameter depends on 
the flexural boundary conditions, the plate flexural orthotropy and flexural anisotropy, and the 
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value of the load factor L2, which depend on the stiffness-weighted laminate thermal-expansion 
parameters.  The stiffness-weighted laminate thermal-expansion parameters depend on the plate 
membrane orthotropy, membrane anisotropy, and the stiffnesses associated with pure bending ac-
tion.

For the buckling results in Figs. 14-17, the nondimensional compliance ratio (1 + C1)/(1 + C2) 
was treated as an independent variable.  For a fixed value of this ratio, buckling results were ob-

tained by again computing the ratios  first and then the load factor L2 by using Eq. (47), in 

accordance with the procedure of case 1.  Then, the critical value of the loading parameter  was 
determined from a buckling analysis for each of the laminates and the critical temperature change 
was obtained by using Eq. (49) in the form

                                                        (88)

where  for a given set of flexural boundary conditions and the load factor L 2 

depends on the stiffness-weighted laminate thermal-expansion parameters and the nondimension-
al compliance ratio (1 + C1)/(1 + C2).  Next, results obtained from Eq. (88) were divided by the 
corresponding results for the corresponding laminates that are fully restrained (C1 = C2 = 0), which 
are given symbolically by

                                                            (89)

Here, it is reiterated that the fully restrained condition is indicated by the symbol .  Similarly, 

the symbol  is used to denote the critical value of the loading parameter for a given fully re-

strained laminate.  For this situation, , where .  Finally, dividing 

Eqs. (88) and (89) gives the result

                                                        (90)

It is useful to point out, that when  and  correspond to wide-column buckling modes, Eq. 
(90) reduces to

                                                  (91)

This special case is indicated in Figs. 14-17 by the solid gray curve in each figure (the solid gray 
curve lies underneath the solid black curve in Fig. 14).

The results shown in Fig. 12 for the fully restrained plates indicate that the critical tempera-
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ture  is highly dependent on the arrangement of the 45-deg, 0-deg, and 90-deg plies. As 

the number of plies increases, the magnitude of the critical temperature change decreases for the 

clamped and simply supported  laminates and increases for the clamped and simply 

supported  laminates and the simply supported  laminates.  The critical 

temperature change varies only slightly for the clamped  laminates.  Overall, the 
plates with clamped edges are more buckling resistant than the corresponding plates with simply 

supported edges, as expected.  The clamped and simply supported  laminates require 

the most heating to cause buckling and the simply supported  laminates require the least 
amount of heating.

The results shown in Fig. 13 for the fully restrained plates indicate that the critical tempera-

ture change  for the [±θ]s and  (m > 5) laminates is highly dependent on the fiber 

angle θ.  In particular, the results for the clamped and simply supported [±θ]s and  (m > 5) 
laminates show substantial increase in the critical temperature change with increasing θ for values 
up to approximately 55 deg and 62 deg, respectively, followed by a significant decrease.  In ad-

dition, the   (m > 5) laminates require more heating to cause buckling than the correspond-
ing  [±θ]s laminates.  Overall, the plates with clamped edges are much more buckling resistant than 
the corresponding plates with simply supported edges, as expected.

The data presented in Figs. 12 and 13 are given in a compact form and are applicable to an 
infinite range of plate width-to-thickness ratios, b/t.  Once the number of laminate plies is select-

ed, the critical temperature change can be found as a function of the plate width  b  for a given 

laminate family.  However, it is important to keep in mind the limitations of classical laminated-
plate bending theory as the plate width-to-thickness ratio b/t becomes smaller than a value of ap-
proximately 20.  Results of this type are useful in structural design and are shown for the fully 

restrained  quasi-isotropic laminates in Fig. 16 of Ref. 7. 

The results in Figs. 14-17 indicate a general, common trend of a reduction in the critical-tem-

perature ratio  with increases in the nondimensional compliance ratio (1 + C1)/(1 + 

C2), for all the laminates considered and both sets of flexural boundary conditions. This reduction 
in (1 + C1)/(1 + C2) corresponds to a reduction in the thermally induced transverse compression 
load and hence the load factor L2.  For many of the laminate configurations shown in the figures, 
the critical-temperature ratios are coincident with points of the gray curves that are defined by Eq. 
(91).  In Fig. 14, the solid black curve shown is on top of the gray curve defined by Eq. (91).  This 
coincidence indicates that an infinitely long laminate that is either fully restrained or elastically 
restrained exhibits a wide-column buckling mode for both restraint cases.  In contrast, the curves 
shown in Figs. 14-17 that are not coincident with the solid gray curve, which are mostly clamped 
plates, indicate the absence of a wide-column buckling mode.  In addition, the effect of varying 
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the number of plies in the , , and  laminates varies significant-
ly with the laminate type.  For plates with finite length, these trends are expected to change dra-
matically because moderate-aspect-ratio, finite-length plates do not exhibit wide-column 
buckling modes.

Generic Results and Examples

In Ref. 7, generic results are presented that enable one to obtain critical temperatures for a 
wide range of laminate configurations that are subjected to fully restrained thermal expansion or 
contraction by using known buckling-behavior results for anisotropic plates subjected to com-
bined mechanical loads.   The work presented in Ref. 7 is based on the simplicity of equations like 
Eq. (49) and consists of data that define fundamental parameters for a wide variety of selected 
laminate constructions.  Specifically, figures that show the stiffness-weighted laminate thermal-

expansion parameters , , and ; the flexural orthotropy parameter β; and the flexural anisot-
ropy parameters γ and δ as a function of material system and laminate stacking sequence are pre-

sented in Ref. 7.  In addition, figures that show the critical value of the loading parameter , or 
buckling interaction curves, as a function of flexural boundary conditions, β, γ, δ, L1,  L2 and L3 
are also presented for a broad range of parameters and combined mechanical loading conditions.  
Results of this type are significant because they illustrate the key aspects of the behavior and show 
overall trends and sensitivity of the behavior to changes in the parameters.  Moreover, these re-
sults enable one to apply knowledge of, and experience with, the behavior of anisotropic plates 
subjected to mechanical loads to the problem of restrained thermal expansion or contraction.  

The present study builds upon the work in Ref. 7 by presenting generic data in this section 
that can be used with the results in Ref. 7 to determine the effect of an elastic restraining medium, 
like the one shown in Fig. 3, on the thermal buckling behavior for a very wide range of laminate 
constructions and restraint configurations. Specifically, results are presented that show the effects 
of material systems and laminate stacking sequence on the fundamental parameters that are used 
to determine the thermally induced mechanical loads.  Moreover, corresponding values of the fun-
damental nondimensional parameters β, γ, and δ that are required to use the generic mechanical-
buckling-behavior results that appear in Ref. 7 are also presented.  In addition, the procedure used 
to determine temperature change by using the generic results is discussed. 

Values of the Fundamental Parameters 

Values of the fundamental parameters that are used herein are presented in this section for 

transversely stiff  laminates,  quasi-isotropic laminates, axially stiff 

 laminates, and  angle-ply laminates.  Nine different contemporary material 
systems are used.  These material systems include boron-aluminum, S-glass-epoxy, a typical bo-
ron-epoxy, AS4/3501-6 graphite-epoxy, AS4/3502 graphite-epoxy, IM7/5260 graphite-bismale-
imide, KEVLAR® 49-epoxy, IM7/PETI-5, and P-100/3502 pitch-epoxy materials.  The 
mechanical properties of these material systems are presented in Table 1 and the nominal ply 
thickness is 0.005 in. 
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Parameters for [(±45/902)m]s laminates.  Values of  (1 + C1)(1 + T1)  and  (1 + C1)/(1 + C2)  

for  laminates are presented in Figs. 18 and 19, respectively, as a function of the rel-
ative-compliance ratio R1 for the nine material systems.  The graph in Fig. 19b is an enlargement 
of the portion of the graph in Fig. 19a that contains the closely grouped curves.  The results in 
these figures are for the special case where the relative-compliance ratios are equal and the ratios 
of the coefficients of thermal expansion are equal (R1 = R2 and T1 = T2), and are independent of 
the number of laminate plies.  The results show a wide variation in (1 + C1)(1 + T1)  and  (1 + C1)/
(1 + C2) with material system.  Moreover, (1 + C1)(1 + T1) is positive for all the material systems, 
and the curves shown in Fig. 18 increase monotonically with increases in the relative-compliance 
ratio R1, except the curve for the P-100/3502 pitch-epoxy material.  Similarly, (1 + C1)/(1 + C2) is 
positive for all the material systems and the curves shown in Figs. 19a and 19b decrease mono-
tonically with increases in the relative-compliance ratio R1, except the curve for the KEVLAR® 
49-epoxy material.  In addition, the magnitudes of (1 + C1)/(1 + C2) for the KEVLAR® 49-epoxy 
material are much greater than those for the other eight materials.  The curves for the boron-alu-
minum, S-glass-epoxy, and boron-epoxy materials exhibit values of (1 + C1)/(1 + C2) that are 
nearly equal to unity, which indicates a relatively small contribution of the elastic restraining me-
dium to the thermally induced transverse load (y-coordinate direction shown in Fig. 2b). 

 

Values of  and  for  laminates are presented in Figs. 20 and 21, respec-
tively, as a function of the number of laminate plies for the nine material systems (see Tables 2-4 
for numerical values).  The graph in Fig. 21b is an enlargement of the portion of the graph in Fig. 

21a that contains the closely grouped curves.  The results show a wide variation in  with ma-

terial system, a relatively benign variation with the number of plies, and that  is positive for all 

the material systems.  However,  is nearly zero valued for the P-100/3502 pitch-epoxy mate-

rial.  Likewise, the results in Figs. 21a and 21b show a substantial variation in  with material 

system, and that  is positive for all the material systems except the P-100/3502 pitch-epoxy 
and KEVLAR® 49-epoxy materials. Specifically, the values for the KEVLAR® 49-epoxy mate-
rial are slightly negative and nearly equal to zero and those for the P-100/3502 pitch-epoxy ma-
terial are negative and have much larger magnitudes than the corresponding values for the other 
materials.

The results in Figs. 18 and 20 indicate that the values of  are positive for the 

 laminates, for all nine material systems, which means that > 0 as long as 

(1 + T1) > 0.  Similarly, the results in Figs. 19 and 21 indicate that the values of  are 

positive for all the materials except the P-100/3502 pitch-epoxy and KEVLAR® 49-epoxy mate-
rials. Thus, for the majority of the materials, the laminates are loaded by biaxial compression 
when uniformly heated and by biaxial tension when uniformly cooled, and as a result can buckle 
only for uniform heating as long as (1 + T1) > 0 (see case 1).  For the KEVLAR® 49-epoxy and 
P-100/3502 pitch-epoxy materials, the laminates are loaded by axial compression and transverse 
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tension when uniformly heated and by oppositely directed loads when uniformly cooled, as long 
as (1 + T1) > 0.  For this situation, the laminates can buckle for uniform heating (case 1) or uniform 
cooling (case 2).  Overall, Figs. 18-21 show that there is a wide range of possibilities available for 
tailoring the thermal buckling characteristics of a laminate family and restraining medium.

The remaining parameters needed for a buckling analysis of the long transversely stiff 

 laminates are the nondimensional flexural orthotropy parameter  β  and the flexural 
anisotropy parameters  γ  and  δ.  Values for these parameters are presented in Figs. 22-24 as a 
function of the number of laminate plies, for the nine material systems.  The corresponding nu-
merical values are given in Tables 5-7, along with values for  (D11/D22)

1/4 in Table 8 that can be 
used to determine numerical values for the thermally induced prebuckling stress resultants.  The 
results in Fig. 22 show a series of monotonically decreasing curves that each approach a constant 
value of  β  from above as the number of plies increases.  Similarly, the results in Figs. 23 and 24 
show a series of monotonically decreasing curves that approach negligible values for  γ   and  δ, 
respectively,  from above as the number of plies increases.  The largest and smallest values of β, 
γ, and  δ  are exhibited by the laminates made of the P-100/3502 pitch-epoxy and boron-aluminum 
materials, respectively.

Parameters for [(±45/0/90)m]s laminates.  Values of  (1 + C1)(1 + T1)  for  qua-
si-isotropic laminates are presented in Fig. 25 as a function of the relative-compliance ratio R1 for 
the nine material systems.  The results in this figure are also for the special case where the relative-
compliance ratios are equal and the ratios of the coefficients of thermal expansion are equal (R1 
= R2 and T1 = T2), and are independent of the number of laminate plies.  Unlike the results for the 

 laminates, the results in Fig. 25 show a relatively small variation in (1 + C1)(1 + T1)  
with material system for the quasi-isotropic laminates.  Moreover, (1 + C1)(1 + T1) is positive for 
all the material systems, and the curves shown in Fig. 25 increase monotonically with increases 
in the relative-compliance ratio R1, with no exceptions.  Values for (1 + C1)/(1 + C2) were deter-
mined to be equal to unity, for all nine material systems and for the values of the relative-compli-
ance ratio R1 shown in Fig. 25.  This result indicates that there is no contribution of the elastic 
restraining medium to the thermally induced transverse load (y-coordinate direction shown in Fig. 
2b).  

Values of  and  for  quasi-isotropic laminates are presented for the nine 
material systems in Figs. 14 and 15, respectively, in Ref. 7.  The results also show a wide variation 

in  with material system for the quasi-isotropic laminates.  Moreover,  is positive for all the 

material systems except the P-100/3502 pitch-epoxy material. Similarly,  is positive for all 
the material systems.

The results in Fig. 14, in Ref. 7, and Fig. 25 herein indicate that the values of  

are positive for the  quasi-isotropic laminates, for all nine materials, except the P-

100/3502 pitch-epoxy material.  Thus,  > 0 for all materials but the P-100/3502 pitch-

epoxy material as long as (1 + T1) > 0.  Similarly, the results in Fig. 15, in Ref. 7, and the result  
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(1 + C1)/(1 + C2) = 1 indicate that the values of  are positive for all the materials.  

Thus, for all materials except the P-100/3502 pitch-epoxy material, the  quasi-iso-
tropic laminates are loaded by biaxial compression when uniformly heated and by biaxial tension 
when uniformly cooled, and as a result can buckle only for uniform heating as long as (1 + T1) > 
0 (see case 1).  For the P-100/3502 pitch-epoxy material, the laminates are loaded by biaxial ten-
sion when uniformly heated and by biaxial compression when uniformly cooled.  These laminates 
must be cooled to buckle (case 1).

Values of the nondimensional orthotropy parameter β and the nondimensional anisotropy pa-

rameters γ and δ  needed for a buckling analysis of the  quasi-isotropic laminates 
made of the same 9 material systems have been presented graphically in Ref. 6. The parameters 
are presented graphically in Ref. 6 as a function of the stacking-sequence number  m, along with 
a discussion of their characteristics.  The corresponding numerical values are given in Tables 20-
22 of Ref. 7, along with values for  (D11/D22)

1/4 in Table 23 of Ref. 7.   The results in Ref. 6 for 
these parameters show a series of monotonically decreasing curves that approach  β = 1, γ = 0, 
and δ = 0 from above as the number of plies increases.  A homogeneous, isotropic material has 
values of  β = 1, γ = 0, and δ = 0.  Thus, the results for β, γ, and δ in Ref. 6 give, to some extent, 
a quantitative measure of quasi-isotropy. 

Parameters for [(±45/02)m]s laminates.  Values of  (1 + C1)(1 + T1)  and  (1 + C1)/(1 + C2)  

for axially stiff  laminates are presented in Figs. 26 and 27, respectively, as a function 
of the relative-compliance ratio R1 for the nine material systems.  The results in these figures are 
also for the special case where the relative-compliance ratios are equal and the ratios of the coef-
ficients of thermal expansion are equal (R1 = R2 and T1 = T2).  Moreover, the results are indepen-

dent of the number of laminate plies.  Like for the  laminates, the results in Figs. 26 

and 27 for the  laminates show a wide variation in (1 + C1)(1 + T1)  and  (1 + C1)/(1 + 
C2) with material system.  Moreover, (1 + C1)(1 + T1) is positive for all the material systems, and 
the curves shown in Fig. 26 increase monotonically with increases in the relative-compliance ratio 
R1, except the curve for the KEVLAR® 49-epoxy material.  Similarly, (1 + C1)/(1 + C2) is positive 
for all the material systems and the curves shown in Fig. 27 increase monotonically with increases 
in the relative-compliance ratio R1, except the curve for the KEVLAR® 49-epoxy material.  In 
addition, the magnitudes of (1 + C1)/(1 + C2) for the KEVLAR® 49-epoxy material are generally 
much smaller than those for  the other eight materials.  The trends exhibited by the curves in Fig. 

27 for the  laminates are generally opposite of the trends exhibited in Figs. 19a and 19b 

for the corresponding  laminates. The curves shown in Fig. 27 for the boron-alumi-
num, S-glass-epoxy, and boron-epoxy materials exhibit values of (1 + C1)/(1 + C2) that are nearly 
equal to unity, which indicates a relatively small contribution of the elastic restraining medium to 
the thermally induced transverse load (y-coordinate direction shown in Fig. 2b). 

 

Values of  and  for  laminates are presented in Figs. 28 and 29, respec-
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tively, as a function of the number of laminate plies for the nine material systems.  The graph in 
Fig. 29b is an enlargement of the portion of the graph in Fig. 29a that contains the closely grouped 
curves.  The corresponding numerical values are given in Tables 9-11.  The results for these axi-

ally stiff laminates also show a wide variation in  with material system, and a generally benign 

variation with the number of plies, and that  is positive for all the materials except the P-100/

3502 pitch-epoxy and KEVLAR® 49-epoxy materials.  Moreover,  is nearly zero valued for 
the KEVLAR® 49-epoxy material.  Likewise, the results in Figs. 29a and 29b show a substantial 

variation in  with material system, and that  is positive for all the material systems 
except the P-100/3502 pitch-epoxy and KEVLAR® 49-epoxy materials. Specifically, the values 
for the P-100/3502 pitch-epoxy material are slightly negative and nearly equal to zero and those 
for the KEVLAR® 49-epoxy material are negative and have much larger magnitudes than the cor-
responding values for the other materials.

The results in Figs. 26 and 28 indicate that the values of  are positive for the 

 laminates, for all material systems, except the P-100/3502 pitch-epoxy and KEV-

LAR® 49-epoxy materials, which means that > 0 as long as (1 + T1) > 0.  Similarly, 

the results in Figs. 27 and 29 indicate that the values of  are also positive for all the 

materials except the P-100/3502 pitch-epoxy and KEVLAR® 49-epoxy materials. Thus, for the 
majority of the materials, the laminates are loaded by biaxial compression when uniformly heated 
and by biaxial tension when uniformly cooled, and as a result can buckle only for uniform heating 
as long as (1 + T1) > 0 (case 1).  For the P-100/3502 pitch-epoxy and the KEVLAR® 49-epoxy 
materials, the laminates are loaded by axial tension and transverse compression when uniformly 
heated and by axial compression and transverse tension when uniformly cooled.  For this situa-
tion, the laminates can buckle for uniform heating (case 2) or uniform cooling (case 1) as long as 
(1 + T1) > 0.  

The remaining parameters needed for a buckling analysis of the long, axially stiff  
laminates are the nondimensional flexural orthotropy parameter  β  and the flexural anisotropy 

parameters  γ  and  δ.  The values of  β  for the  laminates made of the nine material 

systems are identical to the corresponding values for the  laminates that are shown in 

Fig. 22 (see Table 5).  Moreover, the values of  γ  for the  laminates are identical to the 

corresponding values of δ that are shown in Fig. 24 for the  laminates (see Table 7).  

Furthermore, the values of  δ  for the  laminates are identical to the corresponding val-

ues of γ that are shown in Fig. 23 for the  laminates (see Table 6).  Numerical values 
for  (D11/D22)

1/4 that can be used to determine numerical values for the thermally induced prebuck-

ling stress resultants are also given in Table 12 for the  laminates.
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Parameters for [(±θ)m]s laminates.  Values of  and  for  

[(±θ)m]s balanced, angle-ply laminates composed of the 9 material systems are presented in Figs. 
30-35.  The results in Figs. 30 and 31, 32 and 33, and 34 and 35 correspond to values of the rela-
tive-compliance ratios  R1 = R2 = 0, 0.2, and 0.5, respectively, and are independent of the number 
of laminate plies.  For all the results in Figs. 30-35, the ratios of the coefficients of thermal expan-
sion are equal (T1 = T2) and the results are independent of the number of laminate plies. 

 

The results show an extremely wide variation in  and with 

material system and with fiber angle θ.  The largest variations are exhibited by , 

followed by , for all values of the relative-compliance ratios considered.  More-

over,  and  are generally positive for all the material systems ex-

cept, for the most part, for the P-100/3502 pitch-epoxy and KEVLAR® 49-epoxy materials, 
which are negative for several values of the fiber angle θ.  Thus, depending on the material system 
and fiber angle, a laminate may be loaded by various combinations of tension, compression, and 
shear and may buckle when subjected to uniform heating, cooling, or both.  Like the results for 

the transversely stiff  laminates, the  quasi-isotropic laminates, and the 

axially stiff  laminates, the results in Figs. 30-35 show that there is a very wide range 
of possibilities available for tailoring the thermal buckling characteristics of a laminate family.

Values of the nondimensional orthotropy parameter β and the nondimensional anisotropy pa-
rameters γ and δ  for the [(±θ)m]s laminates made of the same 9 material systems have also been 
presented graphically in Ref. 6.  Selected numerical values are also given in Tables 29-31 of Ref. 
7.  The values of β in Ref. 6 for the [(±θ)m]s laminates are independent of the stacking-sequence 
number  m.  The results in Ref. 6 show a series of curves for  β  that vary dramatically with the 
fiber angle θ  and the material system.  The largest values of, and greatest variations in,  β  are 
generally exhibited by the laminates made of the P-100/3502 pitch-epoxy material.  In contrast, 
the smallest values of, and least variations in,  β  are generally exhibited by the laminates made 
of the boron-aluminum material. The values of γ and δ for the [(±θ)m]s laminates are strongly de-
pendent on the stacking-sequence number  m. The results in Ref. 6 for the flexural anisotropy pa-
rameters  γ  and  δ  are for m = 1, which corresponds to the highest degree of flexural anisotropy 
for these laminates.  The graphical results in Ref. 6 show a large effect of the fiber angle θ  and 
the material system on the degree of flexural anisotropy for the [±θ]s laminates.  Like the parameter 
β, the largest values of, and greatest variations in,  γ  and  δ  are generally exhibited by the lami-
nates made of the P-100/3502 pitch-epoxy material, and the smallest values of, and least varia-
tions in,  γ  and  δ  are generally exhibited by the laminates made of the boron-aluminum material.  
A comparison of results for  [(±θ)6]s and [±θ]s  laminates made of IM7/5260 graphite-bismaleimide 
material is presented in Ref. 7 that indicates that the flexural anisotropy of the [(±θ)6]s laminates is 
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negligible compared to that of the corresponding [±θ]s laminates.  A similar trend is expected for 
the corresponding laminates made from most of the other eight material systems.

Buckling Coefficients and Critical Temperature Change

In the present study, the approach that is used to compute critical temperature changes for 
symmetric laminates restrained by the apparatus shown in Fig. 3, in a generic setting, follows the 
scenarios designated herein as cases 1 through 4.  Essentially, one first selects a candidate lami-
nate and computes the nondimensional parameters β, γ, and δ (see Eqs. (1)-(4)).  Next, the load 
factor L2 that defines the thermally induced mechanical loads is calculated (e.g., by using Eq. (47) 
or (50)) for a given restraint-medium configuration.  This step involves the calculation of the stiff-

ness-weighted laminate thermal-expansion parameters  and , and the calculation of the 
compliance parameters (1 + C1) and (1 + C1)/(1 + C2).  The parameter (1 + C1)/(1 + C2) represents 
the contribution of the elastic restraining medium to the thermally induced transverse load (y-co-
ordinate direction shown in Fig. 2b).  Equivalently, the load factor L2 can be calculated from the 

appropriate values of   and .  Then, the critical loading parameter is deter-

mined from figures such as Figs. 25-29 in Ref. 7, which give the critical (mechanical) loading pa-

rameter  as a function of  β, γ, δ, L2, and the flexural boundary conditions.  Finally, the critical 
temperature change is calculated by using, for example, Eq. (49) or (52).

Examples

To illustrate the use of the results presented previously herein with the generic results pre-
sented in Ref. 7, first consider a simply supported [(±45/902)8]s laminate made of IM7/5260 graph-
ite-bismaleimide material and restrained against thermal expansion or contraction by the 
apparatus depicted in Fig. 3.  Moreover, consider a restraining medium that is defined by the rel-
ative-compliance values  R1 = R2 = 0.5  and  ratios of the coefficients of thermal expansion that 
are given by  T1 = T2 > -1 and whose specific values will be defined later.   For these values, the 
axial and transverse compliances of the restraining medium are half of the respective axial and 
transverse compliances of the plate (twice as stiff in each direction).  From Figs. 22-24 and Tables 
5-7, one can estimate that  β ≈ 1.3  and  γ ≈ δ ≈ 0.  Effectively, this laminate is flexurally ortho-
tropic.  Similarly, from a laminate analysis code, or from Figs. 20 and 21 and Tables 2 and 4, one 

could get  = 2.3 x 10-6 /oF, and = 0.3.  In addition, Fig. 8 gives (1 + C1)(1 + T1) = 1.6  and 

Fig. 9 gives (1 + C1)/(1 + C2) = 0.6.  Combining these results gives  = 1.4(1 + T1) x 

10-6 /oF  and  = 0.2.  For this laminate, the only destabilizing loads are biaxial  com-

pression loads that are obtained for uniform heating (case 1).  For this case, L1 = 1, L3 = 0,  and 
L2 = 0.2 is obtained from Eq. (47).  Note that L2 = 0.3 for the same plate fully restrained against 
thermal expansion or contraction.  Thus, the compliance of the boundary has substantially re-

duced the thermally induced transverse load.  For L1 = 1, Kx = .  The value of Kx is obtained 
from Fig. 26 or Table 35 in Ref. 7 by interpolating the results in the figure for  β = 1 and β = 1.5.  
For  β = 1 and L2 = 0.2, Table 35 in Ref. 7 gives Kx = 3.2.  Similarly, for β = 1.5 and L2 = 0.2, 

  α1   α2

  α1/ 1 + C1   α2/ 1 + C2

 pcr

  α1   α2/α1
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Table 35 gives Kx = 3.9.  Interpolating these values gives Kx = 3.6 for β = 1.3.  Substituting Kx = 

3.6 for  and   = 1.4(1 + T1) x 10-6 /oF  into Eq. (49) gives x 106 

oF.  Next, let the plate width be given by b = 32 in. such that the plate width-to-thickness ratio is 

b/t = 100.  For this plate, ≈ .  This result indicates that the critical temperature decreas-

es for  T1 > 0, which corresponds to the situation where the restraining media is expanding and 
providing additional compression loads on the laminate.  For T1 = 0, the relative thermal expan-
sion or contraction of the restraining medium is negligible.  For  -1 < T1 < 0, the restraining me-
dium is contracting relative to the laminate expansion and the critical temperature increases.  As 
T1 approaches -1, the expansion of the laminate is matched by expansion of the restraining medi-
um and buckling cannot occur.  Moreover, for values of -1 < T1 < 0, the possibility of elastic buck-
ling may not exist. The corresponding critical temperature for the plate fully restrained against 
thermal expansion or contraction (C1 = C2 = 0) and with a thermally neutral restraining medium 
is approximately 112oF.   

Next, consider a simply supported [±45/902]s flexurally anisotropic laminate made of IM7/
5260 graphite-bismaleimide material and also restrained against thermal expansion or contraction 
by the apparatus depicted in Fig. 3 with  R1 = R2 = 0.5.  Likewise, the ratios of the coefficients of 
thermal expansion that are given by  T1 = T2 > -1.  From Figs. 22-24 and Tables 5-7, one can obtain  
β ≈ 2.0  and  γ ≈ δ ≈ 0.2.  From a laminate analysis code, or from Figs. 20 and 21 and Tables 2 

and 4, one can get  = 2.4 x 10-6 /oF, and = 0.5.  In addition, Fig. 8 gives (1 + C1)(1 + T1) 

= 1.6 and Fig. 9 gives (1 +C1)/(1 + C2) = 0.6.  Combining these results gives  = 1.5(1 

+ T1) x 10-6 /oF  and  = 0.3.  For this laminate, the only destabilizing loads are again 

biaxial  compression loads that are obtained for uniform heating (case 1).  For this case, L1 = 1, 
L3 = 0,  and L2 = 0.3 is obtained from Eq. (47).  Note once again that L2 = 0.5 for the same plate 
fully restrained against thermal expansion or contraction.  Thus, the compliance of the boundary 

has substantially reduced the thermally induced transverse load.  Again, for L1 = 1, Kx = .  The 
value of Kx is obtained directly from Fig. 35 in Ref. 7 and is given by Kx = 3.3, which corresponds 

to a wide-column buckling mode.  Substituting Kx = 3.3 for  and   = 1.5(1 + T1) x 

10-6 /oF  into Eq. (49) gives x 106 oF.  Next, let the plate width be given by b = 

32 in. such that the plate width-to-thickness ratio is b/t = 100.  For this flexurally anisotropic plate, 

≈ .  The corresponding critical temperature for the plate fully restrained against ther-

mal expansion or contraction and with a thermally neutral restraining medium is approximately 
66oF. 

 pcr   α1/ 1 + C1
  12b2

π2t2 Θ0
cr = 2.6

1 + T1

  Θ0
cr  214 Fo

1 + T1

  α1   α2/α1

  α1/ 1 + C1

  1 + C1

1 + C2

α2

α1

 pcr

 pcr   α1/ 1 + C1

  12b2

π2t2 Θ0
cr = 2.2

1 + T1

  Θ0
cr  181 Fo

1 + T1



40

Concluding Remarks

An analytical approach for synthesizing buckling results and behavior for long, balanced and 
unbalanced symmetric laminates that are subjected to uniform heating or cooling, and elastically 
restrained thermal expansion or contraction has been presented.  A nondimensional buckling anal-
ysis for long flexurally anisotropic plates that are subjected to combined loads has been described 
and useful nondimensional parameters have been presented.  In particular, stiffness-weighted 
thermal-expansion parameters and nondimensional compliance parameters have been presented 
that can be used to determine critical temperatures, for a wide range of laminate constructions and 
restraining media, in terms of physically intuitive, well-known mechanical buckling coefficients.  
Moreover, the effects of membrane orthotropy and membrane anisotropy on the thermally in-
duced prebuckling stress state have been determined for a general elastic restraining medium.  

A large number of results have been presented herein for some common laminates that are 
intended, to some extent, to facilitate a structural designer’s transition to the use of the generic 
buckling design curves that are included and discussed in the paper.  Many of the results were pre-
viously unknown.  In addition, several results have been presented that show the effect of laminate 
construction and restraining-media compliance on the buckling behavior, and several cases are 
presented that indicate when a laminate will buckle because of uniform cooling.  Results of this 
type could be important in the design of vehicles that use liquid fuels or cruise at high altitudes.  
The use of generic buckling design curves that provide physical insight into the buckling problem 
of the present paper in addition to providing useful design data has also been discussed.  In addi-
tion, examples have been presented that demonstrate the use of the generic design curves.   Over-
all, the analysis approach and generic results that have been presented identify the effects or 
characteristics of elastically restrained laminate thermal expansion, membrane orthotropy and 
anisotropy, and flexural orthotropy and anisotropy on laminated-plate buckling in a very general 
and unifying manner.  Although the results are based on classical laminated-plate theory and have 
been demonstrated for infinitely long plates, the approach is applicable to more sophisticated plate 
theories that incorporate effects such as transverse-shear flexibility and can be used for finite-
length plates in many cases.
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* The symbols  L and T denote the longitudinal fiber and transverse matrix directions of a specially orthotropic lamina, respectively.

Table 1: Lamina properties.

Lamina 
property*

Material Systems

Boron
-Al

S-glass-
epoxy

KEVLAR® 
49-epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-

5

P-100/
3502

EL, Msi 33 7.5 11.02 22.1 18.5 20.01 29.58 20.35 53.5

ET, Msi 21 1.7 0.8 1.457 1.64 1.30 2.68 1.16 0.73

νLT 0.23 0.25 0.34 0.258 0.30 0.30 0.23 0.29 0.31

GLT, Msi 7.0 0.80 0.33 0.860 0.87 1.03 0.81 0.61 0.76

αL x 106/oF 3.2 3.5 -2.22 0.0125 0.25 -0.167 3.38 -0.14 -0.64

αT x 106/oF 11.0 11.0 43.89 14.91 16.2 15.6 16.83 16.85 17.2

Table 2: Values of stiffness-weighted laminate thermal-expansion parameter x 106 /oF for [(±45/902)m]s 
laminates (see Fig. 20). 

m

Material Systems

Boron-Al
S-glass-
epoxy

KEVLAR® 
49-epoxy

IM7/5260 AS4/3502
AS4/

3501-6
Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 9.67 6.64 6.19 2.39 3.54 2.28 6.36 2.32 .110

2 9.37 6.36 5.86 2.28 3.37 2.18 5.97 2.20 .105

3 9.28 6.30 5.82 2.26 3.34 2.17 5.91 2.19 .105

4 9.23 6.28 5.81 2.26 3.34 2.18 5.89 2.19 .105

5 9.21 6.27 5.81 2.26 3.34 2.18 5.88 2.19 .105

6 9.19 6.26 5.81 2.26 3.34 2.18 5.88 2.19 .106

7 9.18 6.25 5.81 2.27 3.34 2.18 5.88 2.19 .106

8 9.17 6.25 5.81 2.27 3.34 2.18 5.88 2.19 .106

 
αα1
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Table 3: Values of stiffness-weighted laminate thermal-expansion parameter x 106 /oF for [(±45/902)m]s 
laminates. 

m

Material Systems

Boron-Al
S-glass-
epoxy

KEVLAR® 
49-epoxy

IM7/5260 AS4/3502
AS4/

3501-6
Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 7.54 7.38 -.176 1.11 2.10 .864 8.06 .882 -1.02

2 6.97 6.12 -.133 .843 1.61 .661 6.08 .660 -.738

3 6.80 5.79 -.123 .780 1.50 .613 5.62 .609 -.676

4 6.72 5.64 -.118 .752 1.44 .592 5.41 .586 -.649

5 6.67 5.55 -.116 .736 1.41 .580 5.30 .574 -.633

6 6.64 5.50 -.114 .725 1.40 .572 5.22 .565 -.624

7 6.62 5.46 -.113 .718 1.38 .566 5.17 .560 -.617

8 6.60 5.43 -.112 .713 1.37 .562 5.13 .555 -.612

Table 4: Values of load factor  for [(±45/902)m]s laminates (see Figs. 21a and 21b). 

m

Material Systems

Boron-Al
S-glass-
epoxy

KEVLAR® 
49-epoxy

IM7/5260 AS4/3502
AS4/

3501-6
Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 .779 1.11 -.028 .466 .593 .380 1.27 .381 -9.27

2 .744 .962 -.023 .371 .479 .303 1.02 .300 -7.05

3 .733 .919 -.021 .345 .447 .282 .950 .279 -6.46

4 .728 .898 -.020 .332 .433 .272 .919 .268 -6.18

5 .725 .886 -.020 .325 .424 .266 .900 .262 -6.01

6 .723 .878 -.020 .320 .418 .262 .888 .258 -5.91

7 .721 .873 -.019 .317 .414 .260 .880 .256 -5.83

8 .720 .869 -.019 .315 .411 .258 .873 .254 -5.78

 
α2

  L 2 =
α2

α1
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Table 5:  Values of   for [(±45/902)m]s  and  [(±45/02)m]s  laminates (see Fig. 22).

Material Systems

m Boron/Al
S-glass/
Epoxy

KEVLAR®
49/Epoxy

IM7/5260 AS4/3502
AS4/

3501-6
Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 1.28 1.57 2.03 1.99 1.91 1.90 2.07 2.06 2.24

2 1.14 1.30 1.56 1.55 1.50 1.50 1.57 1.58 1.70

3 1.09 1.22 1.43 1.42 1.38 1.39 1.43 1.45 1.55

4 1.07 1.18 1.37 1.37 1.33 1.34 1.37 1.39 1.49

5 1.06 1.16 1.33 1.33 1.29 1.31 1.33 1.35 1.45

6 1.05 1.15 1.31 1.31 1.27 1.29 1.30 1.33 1.42

7 1.04 1.14 1.29 1.29 1.26 1.27 1.29 1.31 1.40

8 1.04 1.13 1.28 1.28 1.25 1.26 1.27 1.30 1.39

Table 6: Values of   for  [(±45/902)m]s  and  for  [(±45/02)m]s   laminates (see Fig. 23).

Material Systems

m Boron/Al
S-glass/
Epoxy

KEVLAR®
49/Epoxy

IM7/5260 AS4/3502
AS4/

3501-6
Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 .037 .125 .213 .213 .196 .205 .208 .223 .263

2 .015 .054 .094 .095 .087 .092 .091 .099 .120

3 .010 .034 .060 .061 .055 .059 .058 .064 .078

4 .007 .025 .044 .045 .041 .044 .042 .047 .058

5 .005 .019 .035 .035 .032 .034 .034 .037 .046

6 .004 .016 .029 .029 .027 .029 .028 .031 .038

7 .004 .014 .025 .025 .023 .024 .024 .026 .033

8 .003 .012 .022 .022 .020 .021 .021 .023 .028

  ββ =
D12 + 2D66

D11D22

  γ =
D16

D11
3 D22

1/4   δ =
D26

D11D22
3 1/4
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Table 7: Values of   for   [(±45/902)m]s  and  for  [(±45/02)m]s  laminates (see Fig. 24).

Material Systems

m Boron/Al
S-glass/
Epoxy

KEVLAR®
49/Epoxy

IM7/5260 AS4/3502
AS4/

3501-6
Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 .036 .112 .179 .179 .167 .174 .176 .186 .213

2 .014 .042 .063 .063 .060 .062 .062 .065 .074

3 .009 .025 .038 .038 .036 .037 .037 .039 .044

4 .006 .018 .027 .027 .025 .026 .026 .028 .031

5 .005 .014 .021 .021 .020 .020 .020 .021 .024

6 .004 .011 .017 .017 .016 .017 .016 .018 .020

7 .003 .010 .014 .014 .013 .014 .014 .015 .017

8 .003 .008 .012 .012 .012 .012 .012 .013 .014

Table 8:  Values of  for  [(±45/902)m]s   laminates.

Material Systems

m Boron/Al
S-glass/
Epoxy

KEVLAR®
49/Epoxy

IM7/5260 AS4/3502
AS4/

3501-6
Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 .984 .949 .917 .917 .923 .920 .919 .914 .900

2 .962 .883 .819 .818 .830 .822 .823 .812 .786

3 .955 .863 .790 .789 .802 .793 .796 .782 .752

4 .951 .853 .776 .774 .789 .779 .782 .767 .735

5 .949 .847 .767 .766 .781 .770 .774 .758 .726

6 .948 .844 .762 .760 .775 .765 .769 .753 .719

7 .947 .841 .758 .757 .772 .761 .766 .749 .715

8 .946 .839 .755 .754 .769 .758 .763 .746 .711

  δ =
D26

D11D22
3 1/4   γ =

D16

D11
3 D22

1/4

 
D11
D22

1/4
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Table 9: Values of stiffness-weighted laminate thermal-expansion parameter x 106 /oF for [(±45/02)m]s 
laminates (see Fig. 28). 

m

Material Systems

Boron-Al
S-glass-
epoxy

KEVLAR® 
49-epoxy

IM7/5260 AS4/3502
AS4/

3501-6
Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 7.78 8.20 -.209 1.33 2.46 1.02 9.55 1.06 -1.25

2 7.54 7.86 -.198 1.26 2.34 .979 8.97 1.00 -1.20

3 7.47 7.78 -.196 1.25 2.33 .976 8.88 .997 -1.20

4 7.43 7.75 -.196 1.25 2.32 .976 8.85 .997 -1.20

5 7.41 7.74 -.196 1.25 2.32 .977 8.84 .997 -1.20

6 7.40 7.73 -.196 1.25 2.32 .978 8.83 .998 -1.21

7 7.39 7.72 -.196 1.26 2.32 .979 8.83 .998 -1.21

8 7.38 7.71 -.196 1.26 2.32 .979 8.82 .999 -1.21

Table 10: Values of stiffness-weighted laminate thermal-expansion parameter x 106 /oF for [(±45/02)m]s 
laminates. 

m

Material Systems

Boron-Al
S-glass-
epoxy

KEVLAR® 
49-epoxy

IM7/5260 AS4/3502
AS4/

3501-6
Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 9.99 7.38 7.36 2.84 4.15 2.69 7.53 2.77 .135

2 10.13 8.17 8.75 3.40 4.89 3.23 8.81 3.34 .170

3 10.18 8.47 9.34 3.64 5.20 3.46 9.34 3.58 .185

4 10.21 8.63 9.66 3.77 5.37 3.59 9.63 3.72 .194

5 10.22 8.73 9.87 3.86 5.48 3.67 9.81 3.80 .200

6 10.23 8.79 10.01 3.92 5.55 3.73 9.94 3.86 .204

7 10.24 8.84 10.11 3.96 5.61 3.77 10.03 3.91 .207

8 10.24 8.88 10.19 3.99 5.65 3.80 10.10 3.94 .209

 
αα1

 
α2
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Table 11: Values of load factor  for [(±45/02)m]s laminates (see Figs. 29a and 29b). 

m

Material Systems

Boron-Al
S-glass-
epoxy

KEVLAR® 
49-epoxy

IM7/5260 AS4/3502
AS4/

3501-6
Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 1.28 .900 -35.23 2.15 1.69 2.63 .789 2.63 -.108

2 1.34 1.04 -44.24 2.70 2.09 3.30 .982 3.33 -.142

3 1.36 1.09 -47.53 2.90 2.24 3.55 1.05 3.59 -.155

4 1.37 1.11 -49.26 3.01 2.31 3.68 1.09 3.73 -.162

5 1.38 1.13 -50.33 3.08 2.36 3.76 1.11 3.81 -.166

6 1.38 1.14 -51.05 3.12 2.39 3.81 1.13 3.87 -.169

7 1.39 1.15 -51.57 3.15 2.41 3.85 1.14 3.91 -.172

8 1.39 1.15 -51.96 3.18 2.43 3.88 1.14 3.94 -.173

Table 12:  Values of  for  [(±45/02)m]s   laminates.

Material Systems

m Boron/Al
S-glass/
Epoxy

KEVLAR®
49/Epoxy

IM7/5260 AS4/3502
AS4/

3501-6
Boron-
epoxy

IM7/
PETI-5

P-100/
3502

1 1.02 1.05 1.09 1.09 1.08 1.09 1.09 1.09 1.11

2 1.04 1.13 1.22 1.22 1.21 1.22 1.21 1.23 1.27

3 1.05 1.16 1.27 1.27 1.25 1.26 1.26 1.28 1.33

4 1.05 1.17 1.29 1.29 1.27 1.28 1.28 1.30 1.36

5 1.05 1.18 1.30 1.31 1.28 1.30 1.29 1.32 1.38

6 1.06 1.19 1.31 1.32 1.29 1.31 1.30 1.33 1.39

7 1.06 1.19 1.32 1.32 1.30 1.31 1.31 1.34 1.40

8 1.06 1.19 1.32 1.33 1.30 1.32 1.31 1.34 1.41

  L 2 =
α2

α1

 
D11
D22

1/4
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Fig. 1   Sign convention for positive-valued stress resultants.

(a) Destabilizing loading system (b) Subcritical loading system
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Fig. 2   Mechanical loads in a plate elastically restrained against thermal expansion or contraction 
caused by uniform heating or cooling.
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Fig. 3  Central  plate elastically restrained by edge plates against thermal expansion or contraction 
caused by uniform heating or cooling in all plates.
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Fig. 4  Nondimensional compliance coefficient (1 + C1)(1 + T1) for [(±45/0/90)m]s laminates made of IM7/5260 
material and elastically restrained from thermal expansion or contraction by edge plates (T1 = T2, 
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Fig. 5  Nondimensional compliance coefficient (1 + C1)(1 + T1) for [(±45/902)m]s laminates made of IM7/5260 
 material and elastically restrained from thermal expansion or contraction by edge plates
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Fig. 6  Nondimensional compliance coefficient (1 + C1)(1 + T1) for [(±45/02)m]s laminates made of IM7/5260 
material and elastically restrained from thermal expansion or contraction by edge plates

1

2

 R2 =
a22

R

a22
  T1 =
ααx

R

ααx

  T2 =
ααy

R

ααy

Relative-compliance ratio,  R1 =
a11

R

a11

(1 + C1)(1 + T1) 

(T1 = T2, m = 1, 2, ... ).

  1 + C1 1 + T1 =
A 11ααx + A 12ααy (1 + R1)(1 + R2)A 11A 22 – A 12

2

A 11ααx(1 + R2) + A 12ααy A 11A 22 – A 12
2

R2 = 0

0.4
R2 = 0.5

0.3

0.2 0.1

Nondimensional
compliance

coefficient ratio,

0 0.1 0.2 0.3 0.4 0.5

Fig. 7  Nondimensional compliance coefficient ratio (1 + C1 )/(1 + C2 ) for [(±45/0/90)m]s, [(±45/02)m]s, and 
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Fig. 8  Nondimensional compliance coefficient (1 + C1)(1 + T1) for [(±45/0/90)m]s, [(±45/02)m]s, and [(±45/902)m]s  
laminates made of IM7/5260 material and elastically restrained from thermal expansion  
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[(±45/902)m]s laminates made of IM7/5260 material and elastically restrained from thermal expansion  
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Fig. 10  Stiffness-weighted laminate thermal-expansion parameter  
balanced, angle-ply laminates made of IM7/5260 material  and elastically restrained from thermal 
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Fig. 11  Stiffness-weighted laminate thermal-expansion parameter  
balanced, angle-ply laminates made of IM7/5260 material  and elastically restrained from thermal 
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Fig. 12  Critical temperature change for simply supported and clamped laminates made of IM7/5260  
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Fig. 13   Critical temperature change for simply supported and clamped angle-ply laminates made of IM7/5260 
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Fig. 14  Critical temperature change ratio as a function of the nondimensional compliance ratio   
(1 + C1 )/(1 + C2 ) for [(±45/0/90)m]s laminates made of IM7/5260 material and elastically restrained    
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Fig. 15  Critical temperature change ratio as a function of the nondimensional compliance ratio   
(1 + C1 )/(1 + C2 ) for [(±45/02)m]s laminates made of IM7/5260 material and elastically restrained    
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Fig. 16  Critical temperature change ratio as a function of the nondimensional compliance ratio   
(1 + C1 )/(1 + C2 ) for [(±45/902)m]s laminates made of IM7/5260 material and elastically restrained    
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Fig. 17  Critical temperature change ratio as a function of the nondimensional compliance ratio   
(1 + C1 )/(1 + C2 ) for [(±θ)m]s laminates (m > 5) made of IM7/5260 material and elastically restrained   
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Fig. 18 Effects of lamina material properties on nondimensional compliance coefficient (1 + C1)(1 + T1) 
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Fig. 19b Effects of lamina material properties on nondimensional compliance coefficient ratio (1 + C1)/(1 + C2) 
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Fig. 20  Effects of lamina material properties on stiffness-weighted laminate thermal-expansion parameter  
for [(±45/902)m]s laminates.
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Fig. 21a  Effects of lamina material properties on parameter ratio               for [(±45/902)m]s laminates. 
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Fig. 22  Effects of lamina material properties on nondimensional flexural orthotropy parameter β for [(±45/902)m]s 
and [(±45/02)m]s laminates. 
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Fig. 23  Effects of lamina material properties on nondimensional flexural anisotropy parameter γ for [(±45/902)m]s 
laminates (note that the ordinate corresponds to values of  δ  for [(±45/02)m]s  laminates). 
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Fig. 24  Effects of lamina material properties on nondimensional flexural anisotropy parameter δ  for [(±45/902)m]s 
laminates (note that the ordinate corresponds to values of  γ  for [(±45/02)m]s  laminates). 
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Fig. 26 Effects of lamina material properties on nondimensional compliance coefficient (1 + C1)(1 + T1) 
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Fig. 27 Effects of lamina material properties on nondimensional compliance coefficient ratio (1 + C1)/(1 + C2) 
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Fig. 28  Effects of lamina material properties on stiffness-weighted laminate thermal-expansion parameter  
for [(±45/02)m]s laminates.
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Fig. 29a  Effects of lamina material properties on parameter ratio                for [(±45/02)m]s laminates. 

10

  αα2 / αα1

KEVLAR® 49-epoxy

0

-20

-30

-40

-50

Boron-epoxy and S-glass-epoxy 

  αα2

αα1

=
A 12ααx + A 22ααy + A 26ααxy

A 11ααx + A 12ααy + A 16ααxy

Parameter ratio,

  αα2

αα1



63

Number of laminate plies, 8m
0 8 16 24 32 40 48

-2

0

2

AS4/3502

Boron-Aluminum

AS4/3501-6 

IM7/5260

P-100/3502

Fig. 29b  Effects of lamina material properties on parameter ratio                for [(±45/02)m]s laminates. 

IM7/PETI-5

S-glass-epoxy

4

  αα2 / αα1

Boron-epoxy 

Parameter ratio,

  αα2

αα1

  αα2

αα1

=
A 12ααx + A 22ααy + A 26ααxy

A 11ααx + A 12ααy + A 16ααxy

Fiber angle, θ, deg

0 15 30 45 60 75 90
-10

0

10

20

Boron-Aluminum

S-glass-epoxy

P-100/3502

KEVLAR® 49-epoxy

AS4/3502

AS4/3501-6 and

Boron-epoxy

IM7/5260

y

x

Typical lamina fiber

θ

Fig. 30  Effects of lamina material properties on stiffness-weighted laminate thermal-expansion parameter    
for [(±θ)m]s balanced, angle-ply laminates (R2 = R1 = 0, T1 = T2, m  = 1, 2, ...).

Stiffness-weighted
laminate thermal-

expansion parameter,

IM7/PETI-5

  αα1

1 + C1

=
t2(1 + T1) A 11ααx(1 + R1) + A 12ααy A 11A 22 – A 12

2

12 D11D22 (1 + R1)
2A 11A 22 – A 12

2

  αα1/ (1 + C1)(1 + T1)

  αα1 ×× 106

1 + C1 1 + T1

, / Fo



64

Fiber angle, θ, deg

0 15 30 45 60 75 90
-10

0

10

50

Boron-Aluminum
S-glass-epoxy

P-100/3502

AS4/3502

IM7/PETI-5

Boron-epoxy IM7/5260

y

x

Typical lamina fiber

θ

Fig. 31  Effects of lamina material properties on stiffness-weighted laminate thermal-expansion parameter    
for [(±θ)m]s balanced, angle-ply laminates (R2 = R1 = 0, T1 = T2, m  = 1, 2, ...).

Stiffness-weighted
laminate thermal-

expansion parameter,

20

30

40

AS4/3501-6

  αα2

1 + C2

=
t2(1 + T1) A 12ααx + A 22ααy(1 + R1) A 11A 22 – A 12

2

12 D22 (1 + R1)
2A 11A 22 – A 12

2

  αα2/ (1 + C2)(1 + T1)

  αα2 ×× 106

1 + C2 1 + T1

, / Fo

KEVLAR® 49-epoxy

Fiber angle, θ, deg

0 15 30 45 60 75 90
-10

0

2

12

Boron-AluminumS-glass-epoxy

P-100/3502

AS4/3502

IM7/PETI-5

Boron-epoxy

IM7/5260

y

x

Typical lamina fiber

θ

Fig. 32  Effects of lamina material properties on stiffness-weighted laminate thermal-expansion parameter  

Stiffness-weighted
laminate thermal-

expansion parameter, 4

6

8

-2

-4

-6

-8

AS4/3501-6

10

  αα1

1 + C1

=
t2(1 + T1) A 11ααx(1 + R1) + A 12ααy A 11A 22 – A 12

2

12 D11D22 (1 + R1)
2A 11A 22 – A 12

2

for [(±θ)m]s balanced, angle-ply laminates (R2 = R1 = 0.2, T1 = T2, m  = 1, 2, ...).  αα1/ (1 + C1)(1 + T1)

  αα1 ×× 106

1 + C1 1 + T1

, / Fo

KEVLAR® 49-epoxy



65

Fiber angle, θ, deg

0 15 30 45 60 75 90
-10

0

40

Boron-Aluminum

S-glass-epoxy

P-100/3502

KEVLAR® 49-epoxy

AS4/3502

IM7/PETI-5

Boron-epoxy

IM7/5260

y

x

Typical lamina fiber

θ

Fig. 33  Effects of lamina material properties on stiffness-weighted laminate thermal-expansion parameter 

10

30

AS4/3501-6

Stiffness-weighted
laminate thermal-

expansion parameter,

  αα2

1 + C2

=
t2(1 + T1) A 12ααx + A 22ααy(1 + R1) A 11A 22 – A 12

2

12 D22 (1 + R1)
2A 11A 22 – A 12

2

  αα2 ×× 106

1 + C2 1 + T1

, / Fo

for [(±θ)m]s balanced, angle-ply laminates (R2 = R1 = 0.2, T1 = T2, m  = 1, 2, ...).  αα2/ (1 + C2)(1 + T1)

20



66

Fiber angle, θ, deg

0 15 30 45 60 75 90
-10

0

2

10

Boron-AluminumS-glass-epoxy

P-100/3502

KEVLAR® 49-epoxy

AS4/3502

IM7/PETI-5

Boron-epoxy

IM7/5260

y

x

Typical lamina fiber

θ

Fig. 34  Effects of lamina material properties on stiffness-weighted laminate thermal-expansion parameter  

Stiffness-weighted
laminate thermal-

expansion parameter,
4

6

8

-2

-4

-6

-8

AS4/3501-6

  αα1

1 + C1

=
t2(1 + T1) A 11ααx(1 + R1) + A 12ααy A 11A 22 – A 12

2

12 D11D22 (1 + R1)
2A 11A 22 – A 12

2

  αα1 ×× 106

1 + C1 1 + T1

, / Fo

for [(±θ)m]s balanced, angle-ply laminates (R2 = R1 = 0.5, T1 = T2, m  = 1, 2, ...).
  αα1/ (1 + C1)(1 + T1)

Fiber angle, θ, deg

0 15 30 45 60 75 90
-10

0

30

Boron-Aluminum

S-glass-epoxy

P-100/3502

KEVLAR® 49-epoxy

AS4/3502

IM7/PETI-5

Boron-epoxy

IM7/5260

y

x

Typical lamina fiber

θ

Fig. 35  Effects of lamina material properties on stiffness-weighted laminate thermal-expansion parameter 

10

20

AS4/3501-6

Stiffness-weighted
laminate thermal-

expansion parameter,

for [(±θ)m]s balanced, angle-ply laminates (R2 = R1 = 0.5, T1 = T2, m  = 1, 2, ...).  αα2/ (1 + C2)(1 + T1)

  αα2 ×× 106

1 + C2 1 + T1

, / Fo

  αα2

1 + C2

=
t2(1 + T1) A 12ααx + A 22ααy(1 + R1) A 11A 22 – A 12

2

12 D22 (1 + R1)
2A 11A 22 – A 12

2



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2.  REPORT TYPE 

Technical Publication
 4.  TITLE AND SUBTITLE

Buckling Behavior of Long Anisotropic Plates Subjected to Elastically 
Restrained Thermal Expansion and Contraction

5a. CONTRACT NUMBER

 6.  AUTHOR(S)

Nemeth, Michael P.

 7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA  23681-2199

 9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546-0001

 8. PERFORMING ORGANIZATION
     REPORT NUMBER

L-19065

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 26
Availability:  NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email:  help@sti.nasa.gov)

14. ABSTRACT

An approach for synthesizing buckling results for thin balanced and unbalanced symmetric laminates that are subjected to 
uniform heating or cooling and elastically restrained against thermal expansion or contraction is presented.  This approach uses 
a nondimensional analysis for infinitely long, flexurally anisotropic plates that are subjected to combined mechanical loads.  In 
addition, stiffness-weighted laminate thermal-expansion parameters and compliance coefficients are derived that are used to 
determine critical temperatures in terms of physically intuitive mechanical-buckling coefficients.  Many results are presented 
for some common laminates that are intended to facilitate a structural designer’s transition to the use of the generic buckling 
design curves.  Several curves that illustrate the fundamental parameters used in the analysis are presented, for nine 
contemporary material systems, that provide physical insight into the buckling response in addition to providing useful design 
data.  Examples are presented that demonstrate the use of the generic design curves.

15. SUBJECT TERMS

Anisotropy; Buckling; Elastically restrained; Plates; Thermal

18. NUMBER
      OF 
      PAGES

71

19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a.  REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF 
      ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3.  DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

23-064-30-21

11. SPONSOR/MONITOR'S REPORT
      NUMBER(S)

NASA/TP-2004-213512

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1.  REPORT DATE (DD-MM-YYYY)

12 - 200401-


